
Excalibur Key-Generation Protocols For DAG
Hierarchic Decryption

Louis Goubin1, Geraldine Monsalve2,3, Juan Reutter2,3, and Francisco Vial-Prado2,3

1 Laboratoire de Mathématiques de Versailles, UVSQ, Université Paris-Saclay, France
2 DCC, Pontificia Universidad Católica de Chile, Santiago de Chile

3 IMFD Chile www.imfd.cl

Abstract. Public-key cryptography applications often require structur-
ing decryption rights according to some hierarchy. This is typically ad-
dressed with re-encryption procedures or relying on trusted parties, in
order to avoid secret-key transfers and leakages. Using a novel approach,
Goubin and Vial-Prado (2016) take advantage of the Multikey FHE-
NTRU encryption scheme to establish decryption rights at key-generation
time, thus preventing leakage of all secrets involved (even by powerful
key-holders). Their algorithms are intended for two parties, and can be
composed to form chains of users with inherited decryption rights. In this
article, we provide new protocols for generating Excalibur keys under any
DAG-like hierarchy, and present formal proofs of security against semi-
honest adversaries. Our protocols are compatible with the homomorphic
properties of FHE-NTRU, and the base case of our security proofs may
be regarded as a more formal, simulation-based proof of said work.

1 Introduction

In some public-key cryptography applications, parties own decryption rights over
ciphertexts according to some hierarchic structure. For instance, in a mail redi-
rection scenario it may be required that Alice is able to decrypt all of Bob’s
ciphertexts, and not conversely. If Bob simply transfers his secret key to Alice,
she may leak or sell Bob’s secret, causing a lot more damage than leaking Bob’s
plaintexts only. Overcoming this, proxy re-encryption and hierarchical identity-
based encryption schemes rely on trusted parties to generate master secret keys
or involve public re-encryption procedures. Using a novel approach, authors in
[4] proposed two-party computation protocols that securely perform a key gener-
ation procedure of the celebrated NTRU-based Multikey-FHE [8]. The result is
a key pair (skA, pkA) for Alice such that skA can decrypt all of Bob’s ciphertexts,
and no information about Bob’s secret key can be deduced from this key pair,
the execution of the protocol or any public values. Moreover, Alice’s and Bob’s
secrets are tied together, thus effectively avoiding leakage by Alice (assuming
she is not willing to reveal her own secret key skA). The newly-created Excalibur
key pair behaves as a regular key of the system, even allowing multikey homo-
morphic operations when using sufficiently large parameters such as the ones
suggested in [8]. In addition, these keys can be used as inputs to generate more

www.imfd.cl

powerful Excalibur keys, allowing decryption inheritance for a bounded chain
of users. In addition, this whole procedure can be regarded as an automatic N -
hop proxy re-encryption scheme, addressing a re-encryption paradigm in fully
homomorphic encryption scenarios, as pointed out in [4].

In this article we extend these key-generation protocols and provide multi-
party computation protocols in the advised cyclotomic polynomial ring of [9]
that can securely generate FHE-NTRU keys for some types of DAG-like hierar-
chies, in such a way that the key of a particular node n in this hierarchy can
decrypt all messages encrypted for nodes below it, while not having access to
secrets (other than own private keys). In order to do this, we address the case
where Bob above is replaced by a set of participants.

As typical MPC applications, our protocols require the composition of sev-
eral routines. In all generality, this poses additional security restrictions, as a
composition of two secure protocols is not necessarily secure (some examples are
given in [3]). This has been the subject of extensive research, and we highlight
the Universal Composability (UC) framework proposed by Cannetti [2] in which
any two UC-secure protocols may be arbitrarily composed ensuring the inheri-
tance of security. In our case, only non-concurrent composition is performed, and
as pointed out in [3], security is proven directly with simulation-based proofs.

Our contributions. This article provides new protocols that extend those from
[4], addressing the case where k > 2 parties jointly generate an NTRU-FHE key
pair with additional decryption rights, and preventing leakage of secret keys from
the receiving party. To this end, we propose secure multi-party computation pro-
tocols in cyclotomic polynomial rings between parties P1, . . . , Pk that generate
a key-pair for party P1 with decryption rights over all parties involved, and such
that no information about other secret-keys can be leaked from the execution of
the protocol, inputs and outputs, and public values, even if some parties collude.

We provide security analysis of these protocols in the semi-honest but col-
luded setting, where parties follow the protocols and sample from the correct
distributions but may cooperate with each other to deduce secrets. The base
case of our security analysis may be regarded as a more formal, simulation-
based proof of the protocols in [4]. Achieving security in malicious adversarial
settings (where parties may deviate or sabotage the protocol) is a challenging
problem for k > 2 parties, which we leave for future work.

In order to generate an Excalibur key pair that inherits decryption of 3 other
keys with 128 bits of security in mind, parties using our protocols need to perform
around 224 1-out-of-2 OT protocols and 224 multiplications in Zq[x]/(xn+1) with
secure NTRU parameters (this can be performed in range of minutes on a regular
laptop, as per our simulations and [1]). We are confident that there is much to
optimize in these procedures, opening another interesting angle for future work.

Overview of the article. We begin in section 2 by revisiting necessary concepts
to construct our protocols. In sections 3 and 4, we define the notions of security
we want to achieve, and state the corresponding underlying assumptions. Our
protocols are presented in 5, with proofs and security analysis described in 6.

2 Preliminaries

Let q be a large prime. For an integer x ∈ Z, (x mod q) represents the modular
reduction of x into the set {−bq/2c, . . . bq/2c}, which we denote by Zq. The
indicator function of a set S is any function that outputs 1 if the preimage is in
S and 0 otherwise. For a distribution χ that samples from some set S, e ← χ

means that e is sampled from S with the distribution χ, and e $
←− S means that

e is sampled from S according to the uniform distribution. We denote tuples of

elements with bold letters. For n a power of 2, let Rq
def
= Zq[X]/(Xn + 1) be the

cyclotomic ring of polynomials modulo Xn + 1 and coefficients in Zq.

Invertible bounded Gaussian distributions in the quotient ring. We
first point out that the ring Rq = Zq[X]/(Xn + 1) is not a unique factorization
domain as Xn + 1 is generally not irreducible in Zq. Units of this ring with
small coefficients are used as NTRU secret keys. In fact, for q = 1 mod 2n as
in the advised modifications by Stehlé and Steinfeld [9], Xn + 1 splits into n
linear factors in Zq, ensuring a large key space. See [9,4] for more details. In the
following definition, for a real number r > 0, let Γr be the Gaussian distribution
on Rn centered about 0 and with standard-deviation r.

Definition 1 (Bounded Discrete Gaussian distribution over Rq). For a
real number 0 < B � q, let GB be the B-bounded discrete Gaussian distribution
over Rq, that is, the distribution that samples polynomials from Rq as follows:

1. Sample vector x← ΓB, and restart if ||x||∞ > B.
2. Output the polynomial p ∈ Rq whose coefficients vector is bxe.

Let G×B be the distribution that samples from GB until the output is invertible.

FHE-NTRU encryption and the multikey property. The Multikey FHE
scheme presented in [8] uses a modified version of NTRU (Nth-truncated) en-
cryption scheme, which we present here for the sake of completeness.

Parameters: Let n be a power of 2, q be a large prime such that q = 1
mod 2n and 0 < B � q. Recall that Rq = Zq[x]/(xn + 1).

Key Generation: Sample a polynomial f ← GB and set sk← 2f + 1 until
sk is invertible. Sample g ← G×B and define pk← 2g · sk−1.

Encryption: For a message m ∈ {0, 1} and public-key pk, sample s, e← GB ,
and output c← m+ 2e+ s · pk mod q.

Decryption: For ciphertext c and secret-key sk, output m = c · skmod 2.

The linearity of the decryption equation allowed authors of [8] to construct
the first Multikey FHE scheme, where the result of homomorphic operations
involving ciphertexts related to different entities can be jointly decrypted by
these parties. As noted in [4], this linearity also implies that a secret key with
small extra multiplicative factors (such as other secret keys) is able to correctly
decrypt, i.e. a polynomial multiplication in Rq of a small number of secret keys
acts as a regular key and inherits the decryption rights of all its factors. For
two parties in [4], the Rq product of secret keys is performed in a secure MPC
fashion in order to attain the Excalibur property.

3 Security definitions

We present the definitions we use in showing our key-generating protocols are
secure. We distinguish two adversarial settings: the semi-honest case in which
players cooperate with the execution of the protocol and sample from the correct
distributions, but may collude and try to learn secrets from their shared views;
and the malicious case, in which adversaries are not guaranteed to follow the
protocol. In this paper, we only consider semi-honest adversaries, leaving the
malicious case for future work.

3.1 Simulation-based MPC security against semi-honest adversaries

Fix a set of P = {P1, . . . , Pk} of parties. Following e.g. [7], our notion of security
is based on the idea of emulating functionalities, which are k-ary functions f :
({0, 1}∗)k → ({0, 1}∗)k. To describe a functionality f we usually write f =
(f1, . . . , fk), where each fi is a random k-ary function that outputs a string.

As usual, the idea is to show that a protocol computing a functionality f is
secure if all possible information that can be computed by a collusion of some
parties can be simulated by means of the combined input and output of these
parties when executing the protocol.

Let f be a functionality, and π a protocol for computing f . The view of the
i-th party when executing π on input x = {x1, . . . , xk} and security parameter
λ, denoted as viewπi (x, λ), is a tuple (xi, ri,m

i
1, . . . ,m

i
j), where ri is the content

of the internal random tape of the i-th party, and mi
1, . . . ,m

i
j represents the

messages sent and received with other parties during the execution of π. For
a set S ⊆ P of parties, we set viewπS(x, λ) as the concatenation of each tuple
viewπi (x, λ). We also write fS as the tuple formed of each fi, for i ∈ S, and xS
as the tuple formed of each xi, i ∈ S.

The output of the i-th party when executing π on input x = {x1, . . . , xk}
and security parameter λ is denoted as outputπ(x, λ).

Definition 2. Let P be a set of k parties, and f = (f1, . . . , fk) a functionality.
We say that π securely computes f in the presence of semi-honest adversaries if
for every set S (P of colluded parties there is a PPT algorithm IS such that

(IS(1λ,xS , fS(x, λ)), f(x, λ))
s
≈ (viewπS(x, λ), outputπ(x, λ))

We now give a proposition that allows us to prove security for protocols that
involve executing other protocols as non-concurrent sub-routines. Let π1, . . . , π`
be protocols computing functionalities φ1, . . . , φ`, and let ρπ1,...,π` be a protocol
computing a functionality g that makes use of π1, . . . , π` in a non-concurrent
fashion, so that πi is called only after πi−1 returns, and additionally, ρπ1,...,π`

pauses when executing each πi. Denote by ρπ1→φ1,...,π`→φ` the protocol where
instead of calling to each πi, we use an oracle computing the functionality fi.
Using the ideas in e.g. [7], we can show the following.

Proposition 1. If every πi securely computes φi, and ρπ1→φ1,...,π`→φ` securely
computes g, then ρπ1,...,π` securely computes g.

Note that the restriction that sub-protocols are invoked non-concurrently
is key for stating this result in such a simplified way, instead of using all of
the machinery proposed in [2]. We do highlight that the restriction of Canetti’s
framework into our scenario yields security requirements equivalent to that of
Definition 2 (see [3], §5.2).

4 Hardness assumptions

Security of our protocols against semi-honest adversaries is based on two well-
known assumptions (RLWE and DSPR), and the difficulty of new factorization
problems in Rq that extend those from [4].

Definition 3 (Decisional Small Polynomial Ratio assumption, from [9]).
For some parameters q, n,B, it is computationally hard to distinguish between
the following two distributions over Rq: (1) A polynomial pk = 2g(2f+1)−1 ∈ Rq
where f, g ← GB, and (2) a uniformly random polynomial u

$←− Rq.

Definition 4 (Gaussian Product Distribution). Let ξlB be the distribution

that samples polynomials pi ← G×B for i = 1, . . . , l and outputs
∏l
i=1 pi.

Definition 5 (Special factors problem). Let α ← ξlB and β ← ξmB . The
Special Factors Problem is to output α, β with the knowledge of c = α · β and
access to the indicator function of {α, β}.

In other words, the task is to find the correct factorization of c. Recall that
Rq is not a UFD, so for any unit u ∈ Rq there is a posible factorization c =
u · (u−1c). In order to find α, β, the solver must query the indicator function.
In our construction, secret keys play the role of the individual factors of c, and
the indicator function consists in encrypt-decrypt key-guessing routines. When
l = m = 1, this is the small factors problem from [4].

Definition 6 (Special GCD problem). Let α, β ← G×B and y ← ξlB. Given
u = α · y and v = α · β and access to the indicator function of {α, β, y}, output
α, β and y.

Definition 7 (Special Factors Assumption). For some set of parameters, it
is computationally hard to solve the Special Factors or the Special GCD problems.

As noted in [4], Special GCD reduces to a version of DSPR, and the SF
problem may be expressed as a quadratic system of equations in Zq in the
underdetermined setting, which is considered secure [10]. Moreover, as in [4]
we put it as a conjecture that the additional cyclic structure provided by Rq
does not help an attacker to solve this system.

5 MPC key generation protocols

Our key-generating protocols assume a set of participants P = {P1, . . . , Pk}, and
the objective is to create a key pair (sk1, pk1) for participant P1, based on the
set (ski, pki) of all other participants. As we have mentioned, the pair (sk1, pk1)
can decrypt any message encrypted with the public key of any other participant.

We assume the existence of a protocol SPm for computing a certain scalar
product, that works as follows. Party A holds m bits b = (b1, . . . , bm) and party

B holds two vectors r(0) = (r
(0)
1 , . . . , r

(0)
m) and r(1) = (r

(1)
1 , . . . , r

(1)
m). At the end

of the protocol, A learns
∑m
i=1 r

(bi)
i and B learns nothing. Note that when m = 1

this is simply a
(
2
1

)
-OT (1-out-of-2 oblivious transfer). The construction of this

protocol is straightforward, and based on [6]. It is outlined in appendix A.

5.1 Secure MPC protocols for multiplication in Rq

The building blocks of our key-generating scheme are two protocols, that we
name k-Multiplication Protocol and k-Shared Multiplication Protocol. Both of
these protocols share the goal of performing a multiparty multiplication of ele-
ments in Rq, but differ in the final output learned by the participants.

Our k-Multiplication Protocol is a nontrivial extension of algorithm 2-MP,
from [4]. We need this algorithm for defining our protocols, so we recall it bellow.

Algorithm 1 Two-party Rq multiplication 2-MP, from [4].

Require: Player P1 holds x1 ∈ Rq and P2 holds a pair (x2, r2) ⊂ R2
q . Let m ∈ N be

such that it is unfeasible to compute 2m additions in Rq.
Ensure: Player P1 learns x1 · x2 + r2.
1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$
←− Rq)

m
i=1, such that

∑m
i=1 x1i = x1.

3: Player P2 samples m polynomials (r2i
$
←− Rq)

m
i=1 such that

∑m
i=1 r2i = r2.

4: for i = 1, . . . ,m do

5: Player P1 generates a random bit b $
←− {0, 1}, polynomials (v0, v1) $

←− R2
q

and sets vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: Player P2 computes (e0, e1) = (v0 · x2 + r2i, v1 · x2 + r2i).
8: With a

(
2
1

)
-OT protocol, player P1 extracts eb from P2.

9: Let ê1, . . . , êm be the polynomials extracted by P1 in each of the m steps. Player
P1 computes

∑m
i=1 êi = x1 · x2 + r2.

k-Multiplication Protocol (k-MP). We use this protocol to multiply k elements
in our ring. Every participant P` begins with a secret element x` given as input,
as well as a uniformly random polynomial r`. Upon finishing, participant P1

learns
∏k
`=1 x` +

∑k
`=2 r`, and the rest of the participants learn nothing.

Algorithm 2 contains the detail of this protocol, and Algorithm 1 provides
the base case. The idea is to use (k-1)-MP to perform a secure multiplication of

Algorithm 2 Multiparty multiplication of k elements in Rq
Require: A number of players k ≥ 3. Player P1 holds x1 ∈ Rq and each other player

P` holds a pair (x`, r`) ⊂ R2
q . Let m ∈ N be such that it is unfeasible to compute

2m additions in Rq.
Ensure: Player P1 learns

∏k
`=1 x` +

∑k
`=2 r`.

1: procedure k-MP

2: Player P1 generates m polynomials (x1i
$
←− Rq)

m
i=1, such that

∑m
i=1 x1i = x1.

3: Each player P` in P\{P1} samples (r`i
$
←− Rq)

m
i=1 such that

∑m
i=1 r`i = r`,

and 2m polynomials (r̂b`i
$
←− Rq)

m
i=1 for b = 0, 1. Let sb`i = r`i + r̂b`i.

4: for i = 1, . . . ,m do

5: Player P1 generates a random bit b $
←− {0, 1}, and polynomials (v0, v1) $

←− R2
q

such that vb = x1i.
6: Player P1 sends (v0, v1) to P2.
7: for j = 0, 1 do
8: Players P2, . . . , Pk perform [k-1]-MP(vj · x2, (x3, sj3i), . . . , (xk, s

j
ki)).

P2 learns vj ·
∏k
`=2 x` +

∑k
`=3 s

j
`i.

9: Player P2 adds sj2i to this output, obtaining ej = vj ·
∏k
`=2 x` +

∑k
`=2 s

j
`i

10: With a
(
2
1

)
-OT protocol, player P1 extracts eb from P2.

Note that eb = x1i ·
∏k
`=2 x` +

∑k
`=2 s

b
`i.

11: Let êi be the polynomials extracted in each of these m steps, and bi the random

bits. P1 computes θ :=
∑m
i=1 êi =

∏k
`=1 x` +

∑k
`=2 r` +

∑k
`=2

(∑m
i=1 r̂

bi
`i

)
.

12: for ` = 2, . . . , k do
13: P1 extracts ŝ` =

∑m
i=1 r̂

bi
`i from P` with SP (b, (r0

` , r
1
`)),

where b = (b1, . . . , bm) and rj` = (r̂j`1, . . . , r̂
j
`m).

14: Finally, P1 computes θ −
∑k
`=2 ŝ` =

∏k
`=1 x` +

∑k
`=2 r`.

all but participant’s P1 ring elements (see step 8). In turn, the multiplication
for participant P1 is carefully masked with additive uniform noise in order to
avoid input leaking. In the end (Step 12), P1 performs SPm with each other
participant with the goal of cancelling noise.
k-Shared Multiplication Protocol(k-sMP). In this protocol every participant
starts with a pair of additive shares (xi, yi) of elements x, y ∈ Rq, and in the end
learns an additive share πi of the product π = x · y, i.e. ,

∑
πi = (

∑
xi) · (

∑
yi).

The details of this protocol are shown in Algorithm 3. Players perform k(k− 1)
pair-wise multiplications of shares using 2-MP (steps 3-5). The random noise
added by 2-MP serves us to mask the value of the correct shares, and it is then
cancelled out when adding up all polynomials (step 6).

5.2 Excalibur key generation protocols

In out key-generating protocols, players P2, . . . , Pk start with their secret keys
βi, and all players sample a random polynomial si from GB . These polynomials
act as additive shares of P1’s secret, called α (thus P1 does not know α either).

Upon finishing, participant P1 learns the secret key sk1 = α
∏k
i=2 βi, as well as

Algorithm 3 Multiparty shared multiplication of k elements in Rq

Require: Each participant Pi holds a pair (xi, yi) of elements from Rq.
Ensure: Each Pi ∈ P learns an element πi, such that

∑k
j=1 πj = (

∑k
j=1 xj)·(

∑k
j=i yj).

1: procedure k-sMP

2: Each Pi samples Ri = {rij
R←− Rq | j = [1, k] ∧ i 6= j}.

3: for i = 1, . . . , k do
4: for j = 1, . . . , k, j 6= i do
5: Pi, Pj perform 2-MP(xi, (yj , rji)). Thus Pi learns uij = xi · yj + rji

6: Each participant Pi computes πi = xiyi +
∑k
j=1,j 6=i uij −

∑
r∈Ri

r.

Algorithm 4 Excalibur Public Key Generation

Require: Participant P1 holds an element s1 ← GB and each other participant holds
βi = ski and si ← GB . Let α = 2(

∑k
i=1 si) + 1.

Ensure: A public key pk1 = 2g(α
∏k
i=2 βi)

−1 for P1.
1: procedure Excpk

2: Each Pi ∈ P samples gi ← GB , ri
$
←− Rq and tij

$
←− Rq, for j = 1, ..., k.

Let r =
∑k
i=1 ri and g =

∑k
i=1 gi.

3: All participants perform (k)-MP(r1, (β2, t21), . . . , (βk, tk1)). Thus,
P1 learns r′1 = r1 ·

∏k
i=2 βi +

∑k
i=2 ti1.

4: for i = 2, . . . , k do
5: Pi and the rest of participants in P \ {P1, Pi} perform (k-1)-MP. Pi gives

riβi as input, and each other player Pj ∈ P \ {P1, Pi} gives (βj , tji).
Pi learns ui = ri·

∏k
j=2 βk+

∑k
j=2,j 6=i tji and computes r′i = ui−

∑k
j=1,j 6=i tij .

6: With gi, ri and si, r
′
i, all players perform Shared k-MP twice to obtain shares

of w = g · r and z = α · r′ = α
∏k
i=2 βi · r.

Each participant reveal their shares to P2, thus P2 learns z, w.
7: P2 checks: if z is not invertible in Rq, restart the protocol.
8: P2 computes 2w(zβ2)−1 = 2g(α

∏k
j=2 βj)

−1 and publishes it as pk1.

its public key pk1. On the other hand, all other participants only learn pk1. As
advised in [4], parties generate the public key first, and P1 commits to it.

Public key generation(Excpk). Protocol Excpk is used to generate the public
key for participant P1. Every participant Pi apart from P1 holds a key pair
(ski, pki) = (βi, 2hiβ

−1
i). Player P2 plays a special role computing some products.

Upon finishing, a public key pk1 is broadcast to everyone. This public key is a

polynomial of the form 2g(α
∏k
i=2 βi)

−1, for additively shared elements α =

2(
∑k
i=1 si) + 1 and g =

∑k
i=1 gi.

The protocol is shown as Algorithm 4. It begins with participants sampling
a gaussian share gi, and random elements ri, tij used to additively mask polyno-

mials, as in protocol 3. Once the joint secret
∏k
i=2 βi is shared, P2 has the task

of inverting it in the ring, multiplying by α−1, g and broadcasting. To avoid P2

extracting or using these secrets, they are separated into multiplicative factors
that do not leak secrets (or, more precisely, such that extracting secrets from
them needs to solve SF or Special GCD problems).

Algorithm 5 Excalibur Secret Key Generation

Require: Let α = 2(
∑k
i=1 si) + 1 be the same additive share as in protocol 4: Parti-

cipant P1 holds s1 ∈ Rq and each other participant holds a pair (βi, si) ∈ R2
q .

Ensure: A secret-key sk1 = α
∏k
i=2 βi for P1.

1: procedure Excsk

2: Each participant Pi in P \ {P1} samples rij
R←− Rq, with j = 2, . . . , k and j 6= i.

Let ri =
∑k
j=2,j 6=i rij .

3: for i = 2, . . . , k do
4: Pi and the rest of players from P \ {P1, Pi} perform (k-1)-MP,

with Pi holding 2siβi and each other P` holding (β`, r`i).
Pi learns ui = 2si

∏k
j=2 βj +

∑k
j=2,j 6=i rji and computes

Ri = ui −
∑k
j=2,j 6=i rij .

5: All participants perform k-MP(2s1 + 1, (β2, R2), . . . , (βk, Rk)), and P1 obtains
sk1 := ((2s1 + 1)

∏k
i=1 βi) +

∑k
i=2

(
2si
∏k
j=2 βj

)
= α

∏k
i=2 βi ∈ Rq

Secret key generation(Excsk). Protocol Excsk is used to generate the secret
key sk1 for participant P1, given secret keys β2, . . . , βk of the other partici-
pants. This protocol needs the same additive share of α of the Excpk protocol
(hence the need of semi-honest players). Upon finishing, P1 receives the secret

key sk1 = α
∏k
i=2 βi. The protocol is shown as Algorithm 5, and again it uses

our multiplication protocols together with carefully selected random noise.

6 Security analysis

In this section we inspect the security of the proposed scheme against semi-
honest adversaries. Throughout this section, parties {P1, . . . , Pk} participate in
the protocol, player P1 receives the powerful key at the end, and P2 has the
special role of inverting a polynomial in protocol Excpk.

6.1 Extracting keys after the protocol

Recall that P1 is provided an Excalibur key pair of the form (sk1, pk1) = (α ·∏k
i=2 ski, 2g · sk

−1
1) ∈ Rq ×Rq, and assume that some set of colluded parties P ′

try and deduce secrets. Note that extracting α is a successful attack, as sk1/α
can be sold as a valid NTRU key decrypting messages intended to all parties
excepting party P1. Also, extracting a product of secret keys is also an attack
even if individual keys are unknown, because of the multikey property. The
following proposition is proven on appendix C.1.

Proposition 2. Let P ′ ({P1, . . . , Pk} be a set of colluded parties. The problem
of extracting α, g, r, r′ or any secret key skj of a party Pj /∈ P ′ from public
values, views of the protocol and secret keys of parties in P ′ reduces to instances
of G×B -GCD or Special Factors problems. The same holds for the problem of
extracting a product of secret keys of honest parties.

6.2 Extracting secrets during the protocols

We address here the security of all our algorithms against semi-honest adver-
saries, during and after the execution.

Definition 8. Consider the following functionalities. All variables are in Rq:

Fk-MP : (x1, (x2, r2), . . . , (xk, rk)) 7→ ((
∏k
i=1 xi +

∑k
i=2 ri), , , . . . ,),

Fk-sMP : ((x1, y2), . . . , (xk, yk)) 7→ (π1, . . . , πk) where
∑
i πi = (

∑
i xi)·(

∑
i yi);

FExcpk : (s1, (β2, s2), . . . , (βk, sk)) 7→ (pk1, pk1, · · · , pk1);

FExcsk : (s1, (β2, s2), . . . , (βk, sk)) 7→ (α
∏k
j=2 βj , , · · · ,).

Proposition 3. For ρ ∈ {k-MP, k-sMP,Excpk,Excsk}, ρ securely computes Fρ.

The proof of this result relies heavily on Proposition 1, as we need to show
first that k-MP securely computes Fk-MP, then use this result to show that k-sMP
securely computes Fk-sMP, and so forth. The proof of k-MP is also interesting
because we need to perform an induction on k. In [4], authors discussed intuitive
proofs of the base case of the above proposition, namely k = 2. This motivates
us to present a simulation-based proof of ρ = 2-MP here, and the complete proof
proposition 3 is deferred to appendix C.

Proposition 4 (Simulation-based proof of [4], §7.1). The protocol 2-MP
securely computes F2-MP.

Proof. We first point out that the views of the protocol are semantically secure,
that is, they do not leak any secrets from the protocol if our SF assumption
holds. This is straightforward to see and is detailed in the proof of [4], §7.1.

As in section 3.1 let x = {x1, (x2, r2)} and S (P be a set of corrupted
parties. Note that, as k = 2, we have S ∈ {∅, {P1}, {P2}}. Now, according to
definition 2, for every possible set S we construct a PPT algorithm IS such that

(IS(1λ,xS ,F2-MP
S (x)),F2-MP(x))

s
≈ (view2-MP

S (x, λ), output2-MP(x, λ)).

Case 1: S = {P1}. The view of corrupt P1 in 2-MP protocol is:

view2-MP
S (x, λ) =

{
x1, x11, x12, . . . , x1m,
(b1, v

1
0 , v

1
1 , ê1), · · · , (bm, vm0 , vm1 , êm).

Recall that x1 is P1’s input. The values x1i are random polynomials such
that they add up to x1. The random bits bi and the random polynomials vij are

such that vibi is equal to x1i. Finally, êi is the output of the oblivious transfer
functionality and

∑m
i=1 êi = x1 · x2 + r2.

We define IS , a simulator of the view of P1, in algorithm 6. Its output is

IS(1λ,x) =
{
x1, x̃11, x̃12, . . . , x̃1m, (b̃1, ṽ

1
0 , ṽ

1
1 , ẽ1), · · · , (b̃m, ṽm0 , ṽm1 , ẽm).

Recall that F2-MP(x) and output2-MP(x, λ) are both equal to x1 · x2 + r2.

Therefore, we only need to verify that IS(1λ,xS ,F2
S(x))

s
≈ view2-MP

S (x, λ).

Algorithm 6 Simulator for 2-MP corresponding to S = {P1}
Require: 1λ, x1, x1 · x2 + r2
1: procedure IP1

2: Sample m random polynomials (x̃1i
$
←− Rq)

m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i

$
←− {0, 1} and (ṽi0, ṽ

i
1) $
←− R2

q . Set ṽb̃i = xIi.

5: Sample m random polynomials (ẽi
$
←− Rq)

m
i=1, such that

∑m
i=1 ẽi = x1 · x2 + r2.

6: Return x1 together with all the values generated.

First, both views share x1. The polynomials x11, x12, . . . , x1m are uniformly
generated by P1 in 2-MP. On the other hand, x̃11, x̃12, . . . , x̃1m are uniformly
generated by IS . Also, we have that

∑m
i=1 x1i =

∑m
i=1 x̃1i = x1, yielding that

these sets of polynomials are indistinguishable.
In the same fashion, each bi is a random bit and (vi0, v

i
1) are random polyno-

mials in Rq chosen by P1. On the other hand, b̃i is a random bit and (ṽi0, ṽ
i
0) are

random polynomials in Rq generated by IS .
Finally ẽi is chosen at random, while êi equals x1i ·x2+r2i. Note that this last

value is indistinguishable from uniform because of the additive uniformly random
polynomial r2i selected by the honest player P2. We conclude that view2-MP

S (x, λ)
and IS(1λ,xS , y1) are statistically indistinguishable when S = {P1}.
Case 2: S = {P2}. The view of P2 in 2-MP protocol is

view2-MP
S (x, λ) =

{
x2, r2, r21, r22, . . . , r2m, (v

1
0 , v

1
1 , e

1
0, e

1
1), · · · , (vm0 , vm1 , em0 , em1)}

Algorithm 7 Simulator for 2-MP corresponding to S = {P2}
Require: 1λ, (x2, r2).
1: procedure IP2

2: Generate m random polynomials (r̃2i
$
←− Rq)

m
i=1 such that

∑m
i=1 r̃2i = r2.

3: for i = 1 . . .m do
4: Generate random polynomials (ṽi0, ṽ

i
1) $
←− R2

q and compute
(ẽi0, ẽ

i
1) = (ṽi0 · x2 + r2i, ṽ

i
1 · x2 + r2i).

5: Return (x2, r2) together with all the values generated.

We define IS in algorithm 7. Note that F2-MP
P2

(x1, (x2, r2)) is empty. The
output of IS is:

I{P2}(1
λ,xP2) =

{
x2, r2, r̃21, r̃22, . . . , r̃2m, (ṽ

1
0 , ṽ

1
1 , ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1)}

Analogously as before, is it clear that IS(1λ,xS)
s
≈ view2-MP

S (x, λ).

6.3 Parameters and efficiency

The parameters n, q,B control the semantic (and multikey-homomorphic) secu-
rity of the underlying NTRU encryption scheme, and the hardness of our new

problems in Rq of section 4. We consider them fixed and according to the sug-
gested values in [9,4,8] for at least λ = 128 bits of security. The computational
complexity of our key-generation protocol amounts to O((2λ)k−1) instances of(
2
1

)
-OT and O((2λ)k−1) multiplications in Rq (see appendix B for detailed com-

putations). As a heuristic estimation, in order to securely generate an Excalibur
key pair between 4 participants and with 128 bits of security (this is, create a
key pair that inherits decryption of three parties), there is the need to perform
approximatively 224 OT’s and 224 products in Rq, which is feasible for secure
n, q. With FFT or Karatsuba methods, polynomial multiplication can be carried
out in time Õ(n, q), and oblivious transfers can be efficiently performed using
techniques as OT extensions. For instance, [1] reports computation of 700,000(
2
1

)
-OT per second over Wi-Fi, and [5] reduces an OT to three cryptographic

hash computations. In a regular, commercially available laptop, 224 products in
Rq with n = 512 and log2(q) ≈ 256 took us around fifteen minutes (in C++ with
the bignum library GMP (https://gmplib.org/). Although there are relatively
simple efficiency improvements to our protocols, on future work we will focus
on attaining security against malicious adversaries before addressing efficiency
concerns. We point out that, while our protocols may not be efficient enough for
practical applications with a large number of parties, once key-generation pro-
cedures are finished, the resulting keys behave as regular NTRU keys without
extra complexity other than coefficient size (which does not dramatically affect
the efficiency of the NTRU scheme, and is analized in [9]).

7 Conclusion

Our paper extends the original Excalibur key-generation protocols for an ar-
bitrary hierarchy of keys, and presents formal proofs for the security of these
protocols. While we have defined our protocols with respect to a participant P1

that aims to obtain a key that decrypts messages of participants P2, . . . , Pk, we
can immediately extend these for any DAG-like hierarchy, as follows. Starting
from the leaves, which already have their key pairs, first generate the keys of
their parents. For a parent with k children, these keys are of the form α

∏
βi,

with α = 2(
∑
si) + 1 a sum of k elements sampled from GB , and each βi the se-

cret key of one of the leaves. In turn, these keys are used to generate the keys for
nodes at higher levels, and so forth. Note that keys generated in this fashion are
of the form α

∏
γj , where α is as above and γ is itself a product of secret keys of

lower levels (which are either leaves or keys of the same form). Thus, secret keys
for members of higher hierarchies are again products of elements distributing ac-
cording to a gaussian distribution, so all of our security proofs can be extended
for more complex hierarchies; we only need to update our hardness assumptions
so that they hold with wider gaussian distributions, that is, bounded by 2kB+1
instead of B, where k is the outdegree of the hierarchy.

The problem of key-generation in the presence of malicious adversaries is an
interesting direction for future work. In particular, we note that this case is not
immediate form our results, as Definition 2 and Proposition 1 must be tightened

when considering the malicious case, because tampering with intermediate values
may affect the input of other protocols, even if they involve honest players only).

Acknowledgements

We would like to thank the anonymous reviewers for their comments. This work
was supported by Instituto Milenio Fundamentos de los Datos, Vicuña Mackenna
4860, Santiago, Chile, and Fondecyt Chile (project number 1170866). The fourth
author would like to thank Claudio Orlandi for his insight and for providing refer-
ences on simulation-based proofs, and Mart́ın Ugarte for his helpful comments.

References

1. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation, 11 2013.

2. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE
Symposium on, pages 136–145. IEEE, 2001.

3. Ran Canetti. Security and composition of cryptographic protocols: A tutorial (part
i). SIGACT News, 37(3):67–92, September 2006.

4. Louis Goubin and Francisco José Vial Prado. Blending FHE-NTRU keys – the
excalibur property. In Progress in Cryptology – INDOCRYPT 2016. Springer In-
ternational Publishing, 2016.

5. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently, 06 2003.

6. Shun-Dong Li and Yi-Qi Dai. Secure two-party computational geometry. Journal
of Computer Science and Technology, 20(2):258–263, Mar 2005.

7. Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique.
In Tutorials on the Foundations of Cryptography, pages 277–346. Springer, 2017.

8. Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multi-
party computation on the cloud via multikey fully homomorphic encryption. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 1219–1234, New York, NY, USA, 2012. ACM.

9. Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems
over ideal lattices. In EUROCRYPT, 2011.

10. Enrico Thomae and Christopher Wolf. Solving underdetermined systems of mul-
tivariate quadratic equations revisited. In Marc Fischlin, Johannes Buchmann,
and Mark Manulis, editors, Public Key Cryptography – PKC 2012, pages 156–171,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

A Scalar product protocol SPm

In our k-Multiplication protocol (algorithm 2), parties rely on a multiparty scalar
product protocol as a subroutine to cancel additive noise.

Definition 9. For m ∈ N, let SPm be a two-party protocol performing the fol-
lowing. Party A has a sequence of bits ordered in a binary vector b = (b1, . . . , bm).

For each i = 1, . . . ,m, party B has a pair of polynomials (p
(0)
i , p

(1)
i) of Rq. In

the end, party A learns γ = p
(b1)
1 + p

(b2)
2 + · · · + p

(bm)
m and nothing more. Party

B learns nothing.

We refer to this functionality as a scalar product4, since it computes

γ =
m∑
i=1

p
(bi)
i = (p01, . . . , p

0
m) · bc + (p11, . . . , p

1
m) · b,

where bc = (b̄1, . . . , b̄m) is the binary complement of b. The protocol is outlined
in algorithm 8 below.

Algorithm 8 Scalar product protocol

Require: Alice holds b = (b1, . . . , bm) ∈ {0, 1}m. Bob holds 2m polynomials

((p
(0)
i , p

(1)
i) ∈ R2

q)
m
i=1. Let κ be such that it is unfeasible to compute 2κ additions

in Rq.
Ensure: Alice learns (p01, . . . , p

0
m) · bc + (p11, . . . , p

1
m) · b, Bob learns nothing.

1: procedure SPm
2: Alice samples κ vectors b1, . . . , bκ

$
←− Zm such that b1 + · · ·+ bκ = b.

3: for i = 1 . . . κ do
4: Alice samples a bit σ and two vectors a0,a1

$
←− {0, 1}m. She sets aσ ← bi.

5: Alice sends the pair (a1,a2) to Bob.
6: Bob computes

d0 = (p01, . . . , p
0
m) · ac0 + (p11, . . . , p

1
m) · a0

d1 = (p01, . . . , p
0
m) · ac1 + (p11, . . . , p

1
m) · a1

7: With a
(
2
1

)
-OT protocol, Alice extracts γi := dσ from Bob.

8: Alice computes γ =
∑κ
i=1 γi = (p01, . . . , p

0
m) · bc + (p11, . . . , p

1
m) · b.

Remark: This protocol can be restated as a
(
2m

1

)
-OT protocol, as follows. For

each x ∈ {0, 1}m, party B computes a mapping x 7→
∑m
i=1 p

(x[i])
i where x[i] is

the i-th bit of x. Then, party A extracts the polynomial corresponding to x′ = b
with a

(
2m

1

)
-OT protocol. We point out that this is highly inefficient, because

B needs to compute O(2m) additions in Rq.

4 In the vector space Rmq . Recall that Rq ' Fqn , the field of characteristic qn

B Algorithmic complexity

In this appendix we develop expressions for the computational complexity of our
key generation protocols. In this section, let n, q,B be secure NTRU parameters,
m be such that it is unfeasible to compute 2m additions in Rq, and k parties are
involved in the key generation procedure.

As we show below, an Excalibur key pair (sk, pk) can be generated inO((2m)k)
products in Rq and O((2m)k−1) basic

(
2
1

)
-OT protocols. While this is certainly

prohibitive for a large amount of parties and reasonable security, with fast poly-
nomial multiplication and OT-extension techniques it is possible to generate a
key pair with k = 4 and m = 128 in some minutes. Let us also mention that this
key acts as other keys of the system, that is, after key generation is completed, no
extra complexity is to be expected for encryption, decryption or homomorphic
procedures (other than coefficient size, whose impact in complexity is analyzed
in [8]).

Definition 10. Let θ (resp. π) be the computational cost of performing a
(
2
1

)
-OT

protocol (resp. performing a multiplication in Rq).

Proposition 5. The computational cost of performing k-MP is approximatively
(2m)k−1π + (2m)k−1θ. The computational cost of performing k-sMP is approxi-
matively mk(k − 1)(2π + θ).

Proof. First, note that the computational cost of performing SPm (with κ = m)
is mθ (see algorithm 8 from appendix A and note that the scalar product is
not expressed in terms of full Rq products), and the cost of performing 2-MP
is (2π + θ)m. Let uk be the computational cost of performing k-MP. Given the
description of the protocol in algorithm 2, we have the following recurrence:{

uk = 2muk−1 + kmθ,
u2 = (2π + θ)m.

To see this, note that parties first perform 2m instances of (k-1)-MP, then m(
2
1

)
-OT extractions, and finally (k − 1) scalar products SPm. The solution to

this equation for k ≥ 3 is given by

uk = (2m)k−2u2 +mθ

k∑
i=3

i(2m)k−i,

and therefore the cost of k-MP is approximately (2m)k−1 products in Rq and
(2m)k−1

(
2
1

)
-OT protocols.

Let now vk be the computational cost of performing k-sMP. Parties perform
k(k − 1) instances of 2-MP (algorithm 3), therefore we have

vk = mk(k − 1)(2π + θ).

Proposition 6. The cost of performing both Excpk and Excsk between k parties
is O(uk), that is, O((2m)k−1) products in Rq and O((2m)k−1)

(
2
1

)
-OT protocols.

Proof. In Excpk (algorithm 4), parties perform one k-MP and (k − 1) instances
of (k-1)-MP. Also, in Excsk (algorithm 5) parties perform (k − 1) instances of
(k-1)-MP and one final k-MP. The leading term of computational cost in both
cases is therefore O((2m)k−1) products and ((2m)k−1) oblivious transfers.

Remark: With m = 128 bits of security against brute force additions in
Rq, four parties need to compute around 224 products in Rq and 224 1-out-of-2
oblivious transfer protocols.

C Security proofs

C.1 Proof of proposition 2

Recall that the output of the proposed protocol is a key-pair of the form

(sk1, pk1) = (α ·
k∏
i=2

ski, 2g · sk−11) ∈ Rq ×Rq,

where for i = 2, . . . , k, (ski, pki)← NTRU-Keygen() and α = 2(f1+· · ·+fk)+1 for
polynomials fj sampled from G×B . The ring elements available to the uncolluded
adversary are given by the output secret key, and public keys. Let pi = pk−1 ∈ Rq
for i ∈ {1, . . . , k}. Note that pi = gi · ski for some gi ∈ Rq. The task of the
adversary that receives sk1 is to extract any element of the set {α, sk2, . . . , skk}
from the view 

sk1 = α ·
∏k
i=2 ski,

p1 = g1 · α ·
∏k
i=2 ski,

p2 = g2 · sk1,
...
pk = gk · skk.

Extracting α is a successful attack, as sk1/α can be sold as a valid NTRU key
decrypting messages intended to all parties excepting party P1. Also, extracting
a product of secret keys is also an attack even if individual keys are unknown,
because of the inherited decryption rights. Without loss of generality, we assume
that the attacker intends to extract an individual secret key, since keys can be
grouped together in the view and equations are equivalent, but with different
size parameters. For instance, an attacker extracting sk2 · sk3 can reformulate
the instance defining sk′ = sk2 · sk3, p′ = p2 · p3 and extract sk′ from a wider
Gaussian distribution.

Claim. Extracting α from sk1 is an instance of the special factors problem.

Proof. Let β =
∏k
i=2 ski. The task is to extract α from α · β.

Claim. Extracting ski for i ∈ {2, . . . , k} from sk1 is an instance of the special
factors problem.

Proof. Let γ = α ·
∏k
j=2,j 6=i skj . The task is to extract ski from ski · γ.

Claim. Extracting ski for i ∈ {2, . . . , k} from the whole view is an instance of
G×B -GCD problem, for some bound B.

Proof. Write sk1 = δ · ski for some δ ∈ Rq and consider pi = gi · ski. There are
no other equations involving ski or gi, therefore solving for ski is exactly solving
G×B -GCD.

Claim. Extracting secret keys from the whole view and informationfrom collu-
sion with other parties are G×B -GCD or special factors problems.

Proof. If the attacker learns ski for i ∈ {2, . . . , k} by collusion, then defining
sk′∗ = sk∗/ski, p

′
1 = p1/pi reduces to an equivalent instance of the problem of

extracting another secret key. In other words, the view is now

ski
sk′∗ = α ·

∏k
j=2,j 6=i skj , (∗)

p∗ = g′∗ · α ·
∏k
j=2,j 6=i skj ,

p2 = g1 · sk1,
...
pk = gk · skk,

and the only equations involving another secret-key skl for l 6= i are (∗) and
pl = gl · skl, defining an instance of G×B -GCD. The same holds for a larger set of
colluded parties.

Claim. Extracting α, g, r or any βi from z, w and all public values is an instance
of the special factors problem.

Proof. The task is to extract α, g, r from w = g · r and z = α · r′ with z′ =
r
∏k
i=2 βi.

C.2 Proof of proposition 3

From now on we say that k-MP uses a functionality FSPm for the scalar product
as in algorithm SPm. This protocol is outlined in A.

k-MP: We proceed with an inductive argument. First, we assume that for all
k′ such that 2 ≤ k′ < k, k’-MP securely computes Fk′ . The inductive step is to

show that k-MP(k-1)-MP→Fk−1,SPm→FSPm

securely computes Fk-MP.
We begin by describing the views of parties P1 (the key receiver), P2, and P`

for ` > 2.

viewk-MP
P1

(x, λ) =


x1,
x11, x12, . . . , x1m,
(b1, v

1
0 , v

1
1 , ê1), . . . , (bm, v

m
0 , v

m
1 , êm),

θ, ŝ1, . . . , ŝk

The elements x1i, bi, v
i
j and êi are as in the proof of proposition 4. On the

other hand, the polynomial θ is the sum of êi and ŝ` the sum of some random
values rj`i of player P`.

viewk-MP
P2

(x, λ) =


x2, r2,
r21, r22, . . . , r2m,
(r̂021, . . . , r̂

0
2m), (r̂121, . . . , r̂

1
2m),

(v10 , v
1
1 , e

1
0, e

1
1), · · · , (vm0 , vm1 , em0 , em1)

In P2’s view, the polynomials r2i, r̂
j
2i are uniformly random values in Rq.

viewk-MP
P`

(x, λ) =

x`, r`,
r`1, r`2, . . . , r`m
(r̂0`1, . . . , r̂

0
`m), (r̂1`1, . . . , r̂

1
`m)

Note that the view of P` is a subset of the view of P2. The tuple (x`, r`) is
the party’s input, while r`i and r̂j`i are uniformly random polynomials.

For the construction of the algorithm IS , we consider the following four cases:

1. Case P1, P2 ∈ S

Algorithm 9 Simulator I1S for k-MP

Require: 1λ, xS , Fk-MP
S (x).

1: procedure I1S
2: Generate m polynomials (x̃1i

$
←− Rq)

m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i

$
←− {0, 1} and (ṽi0, ṽ

i
1) $
←− R2

q . Set ṽibi = x̃1i.

5: Generate m polynomials (r̃2i
$
←− Rq)

m
i=1, such that

∑m
i=1 r̃2i = r2.

6: Generate 2 ·m polynomials (r̃02i, r̃
1
2i

$
←− R2

q)
m
i=1 and compute s̃2 =

∑m
i=1 r̃

b̃i
2i .

7: Compute (ṽi0 · x2, ṽi1 · x2)mi=1.
8: for each P` ∈ S ∧ i = ` > 2 do
9: Generate m polynomials (r̃`i

$
←− Rq)

m
i=1, such that r` =

∑m
i=1 r̃`i.

10: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$
←− R2

q)
m
i=1 and compute s̃` =

∑m
i=1 r̃

b̃i
`i .

11: Generate 2 ·m polynomials (ẽi0, ẽ
i
1

$
←− Rq)

m
i=1 and compute θ̃ =

∑m
i=1 ẽ

i
bi

.

12: For each P` 6∈ S, generate s̃`
$
←− Rq, such that θ̃ −

∑k
`=2 s̃` = Fk-MP

P1
(x).

13: Return xS together with all the values generated.

Rearranging values (and, for the sake of presentation, repeating some of
them) we have that the following output of I1S :

I1S(x, λ) =



x1,
x̃11, x̃12, . . . , x̃1m,

(b̃1, ṽ
1
0 , ṽ

1
1 , ẽ

1
1), · · · , (b̃m, ṽm0 , ṽ11 , ẽmm),

θ̃, s̃1, . . . , s̃k

x2, r2,
r̃21, r̃22, . . . , r̃2m,
(r̃021, . . . , r̃

0
2m), (r̃121, . . . , r̃

1
2m),

(ṽ10 , ṽ
1
1 , ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1),

for P` ∈ S\{P1, P2} :
x`, r`, r̃`1, . . . , r̃`m,
(r̃0`1, . . . , r̃

0
`m), (r̃1`1, . . . , r̃

1
`m)

First of all, inputs are the same for the ideal functionalities and the views of
the protocol. Elements x̃1i are randomly generated in I1S , just like x1i in the

protocol, and are therefore indistinguishable. The same happens with b̃i, ṽ
i
0,

ṽi1, r̃`i, r̃
0
`i and r̃1`i.

The element ẽii is a random element in Rq, and again it is indistinguishable

from êii = vibi
∏k
`=2 x` +

∑k
`=2 s

bi
`i . Finally, θ̃−

∑k
`=2 s̃` equals Fk-MP

P1
(x), just

as in protocol k-MP.

We conclude that IS(1λ,xS ,FkS(x))
s
≈ viewk-MP

S (x, λ), when {P1, P2} ⊆ S.

The remaining three cases are shown just as above; we only write the output
of the algorithms for completeness.

2. Case P1 6∈ S, P2 ∈ S

Algorithm 10 Simulator I2S for k-MP

Require: 1λ, xS , FkS(x).
1: procedure I2S
2: Generate m polynomials (r̃2i

$
←− Rq)

m
i=1, such that

∑m
i=1 r̃2i = r2.

3: Generate 2m polynomials (r̃02i, r̃
1
2i

$
←− R2

q)
m
i=1.

4: Generate polynomials (ṽi0, ṽ
i
1

$
←− R2

q)
m
i=1.

5: for each P` ∈ S ∧ ` > 2 do
6: Generate m polynomials (r̃`i

$
←− Rq)

m
i=1, such that r` =

∑m
i=1 r̃`i.

7: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$
←− R2

q)
m
i=1.

8: if P \ {P1} = S then
9: Compute ẽij = ṽij

∏k
`=2 x`+

∑k
`=2 r̃`i+

∑k
`=2 r̃

j
`i, for j = 0, 1 and i = 1, . . . ,m.

10: else
11: Generate 2m random polynomials (ẽi0, ẽ

i
0

$
←− Rq)

m
i=1.

12: Return xS , FkS(x) together with all the values generated.

Rearranging the output of I2S we have:

I2S(x, λ) =



x2, r2,
r̃21, r̃22, . . . , r̃2m,
(r̃021, . . . , r̃

0
2m), (r̃121, . . . , r̃

1
2m),

(ṽ10 , ṽ
1
1 , ẽ

1
0, ẽ

1
1), · · · , (ṽm0 , ṽm1 , ẽm0 , ẽm1)

for P` ∈ S\{P1, P2} :
x`, r`, r̃`1, . . . , r̃`m,
(r̃0`1, . . . , r̃

0
`m), (r̃1`1, . . . , r̃

1
`m)

3. Case P1 ∈ S, P2 6∈ S

Algorithm 11 Simulator I3S for k-MP

Require: 1λ, xS , FkS(x).
1: procedure I3S
2: Generate m polynomials (x̃1i

$
←− Rq)

m
i=1, such that

∑m
i=1 x̃1i = x1.

3: for i = 1 . . .m do
4: Sample b̃i

$
←− {0, 1} and (ṽi0, ṽ

i
1) $
←− R2

q . Set ṽibi = x̃1i.

5: for each P` ∈ S ∧ ` > 2 do
6: Generate m polynomials (r̃`i

$
←− Rq)

m
i=1, such that r` =

∑m
i=1 r̃`i.

7: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$
←− R2

q)
m
i=1 and compute s̃` =

∑m
i=1 r̃

b̃i
`i .

8: Generate 2 ·m polynomials (ẽi0, ẽ
i
1

$
←− Rq)

m
i=1 and compute θ̃ =

∑m
i=1 ẽ

i
bi

.

9: For each P` 6∈ S, generate s̃`
$
←− Rq, such that θ̃ −

∑k
`=2 s̃` = FkP1

(x).
10: Return xS together with the values generated.

Now, the output of I3S is of the form:

I3S(x, λ) =



x1,
x̃11, x̃12, . . . , x̃1m,

(b̃1, ṽ
1
0 , ṽ

1
1 , ẽ

1
1), · · · , (b̃m, ṽm0 , ṽ11 , ẽmm),

θ̃, s̃1, . . . , s̃k

for P` ∈ S\{P1, P2} :
x`, r`, r̃`1, . . . , r̃`m,
(r̃0`1, . . . , r̃

0
`m), (r̃1`1, . . . , r̃

1
`m)

4. Case P1 6∈ S and P2 6∈ S

Algorithm 12 Simulator I4S for k-MP

Require: 1λ, xS , FkS(x).
1: procedure I4S
2: for each P` ∈ S do
3: Generate m polynomials (r̃`i

$
←− Rq)

m
i=1, such that r` =

∑m
i=1 r̃`i.

4: Generate 2 ·m polynomials (r̃0`i, r̃
1
`i

$
←− R2

q)
m
i=1.

5: Return xS together with all the values generated.

The output of I4S is of the form:

I4S(x, λ) = {x`, r`, r̃`1, . . . , r̃`m, r̃0`1, . . . , r̃0`m, r̃1`1, . . . , r̃1`m|P` ∈ S \ {P1, P2}}

As before, we conclude that IS(1λ,xS ,FkS(x))
s
≈ viewk-MP

S (x, λ) for all S (P ,
which was to be shown. In conclusion, the protocol k-MP securely computes
Fk-MP. �

k-sMP : We prove that k-sMP2-MP→F2-MP

securely computes Fk-sMP. Since we
have already shown that k-MP securely computes Fk-MP, then by Proposition 1
we have that k-sMP securely computes Fk-sMP.

Begin by noting that k-sMP is a symmetrical protocol, therefore views of all
parties are similar:

viewk-sMP2-MP→F2-MP

Pi
(x, λ) =

xi, yi,
(ri1, ri2, . . . , ri,i−1), (ri,i+1, . . . , rik),
(ui1, ui2, . . . , ui,i−1), (ui,i+1, . . . , uik),

The pair (xi, yi) is the input of P1 and rij are sampled uniformly random
from Rq. The value uij is the output of the function F2(xi, (yj , rji)) for Pi.

We define a PPT algorithm IS in algorithm 13.

Algorithm 13 Simulator IS for k-sMP

Require: 1λ, xS , Fk-sMP
S (x).

1: procedure IS
2: for Pi ∈ S do
3: Samples R̃i = {r̃ij $

←− Rq|j ∈ [1, k] ∧ i 6= j}
4: for Pi ∈ S do
5: for Pj ∈ P \ {P1} do
6: if Pj ∈ S then
7: Set ũij = xi · xj + r̃ji
8: else
9: Samples ũij

$
←− Rq

10: Return xS together with the values generated.

Note that the output of the protocol is identical to the output of the func-
tionality. Then we just need to show that

IS
(
1λ,xS ,Fk-sMP

S

2-MP→F2-MP

(x, λ)
) s
≈ viewk-sMP

S

2-MP→F2-MP

(x, λ)

Let us recall that the view S of the protocol is the concatenation of the indi-
vidual views of Pi ∈ S and that the inputs xS = {(xi, yi)|Pi ∈ S} of algorithm
IS are identical to the inputs of these views. Hence, elements rij are obtained
uniformly from Rq in both the algorithm and the protocol, and are therefore
indistinguishable.

Now, elements uij = xi · xj + rji are indistinguishable from a uniformly ran-
dom polynomial in Rq, unless we have information about xj or rji. Therefore,
for each Pi, if Pj is not in S, the uniform ũij in this algorithm is indistinguish-
able from the one generated by the protocol. If Pj belongs to S then in both
cases it is computed from xi · xj + rji, and thus for any S these values are also
indistinguishable.

We conclude that IS is indistinguishable from the view of S in k-sMP, thus
k-sMP securely computes Fk-sMP. �

Excpk: We prove that the protocol Excpk, that uses functionalities Fk-MP and
Fk-sMP, securely computes FExcpk .

The views of different parties are very similar to each other and are shown
bellow:

– View of P1

view
Excpk
P1

(x, λ) =

{
s1, g1, r1, t11, . . . , t1k
r′1, z1, w1

Recall that s1 is P1’s input, and g1, r1, (t11, . . . , t1k) are uniformly generated

polynomials. The value r′1 is the output of Fk-MP, which computes r1
∏k
i=2 βi

plus some random values. The pair z1, w1 are the outputs of Fk-sMP shared
functionality to compute z = α · r′ and w = g · r, respectively.

– View of Pi, with i 6= 1, 2

view
Excpk
Pi

(x, λ) =

βi, si, gi, ri, ti1, . . . , tik
ui, r

′
i,

zi, wi

This view has many elements that are analogous of the ones in the view of
P1, hence we only mention new ring elements. The pair (βi, si) is Pi’input.

The value ui is the output of Fk-1-MP functionality to compute ri
∏k
j=2 βj

plus some random elements and r′i is an additive random masking for ui.
– View of P2

view
Excpk
P2

(x, λ) =

β2, s2, g2, r2, t21, . . . , t2k
u2, r

′
2,

z1, . . . , zk, z, w1, . . . , wk, w

This view is similar to the last views. The pairs (zi, wi) are sent by Pi to P2.
Finally, z is the sum of zi elements and w the sum of wi elements.
We define IS for Excpk in the simulator algorithm 14. The output of IS is
explained as follows:
• If P1 ∈ S, then

{s̃1, g̃1, r̃1, t̃11, . . . , t̃1k, ũ2, r̃′2, z̃1, w̃1, } ∈ I
Excpk
S (x, λ)

• If P2 ∈ S, then

{β̃2, s̃2, g̃2, r̃2, t̃21, . . . , t̃2kũ2, r̃′2, z̃1, . . . , z̃k, z, w̃1, . . . , w̃k, w} ∈ I
Excpk
S (x, λ)

• If Pi ∈ S and Pi 6= P1, P2, then

{β̃i, s̃i, g̃i, r̃i, t̃i1, . . . , t̃ik, ũi, r̃′i, z̃i, w̃i} ∈ I
Excpk
S (x, λ)

Since S is a strict subset of P , the elements in the view of S in Excpk proto-
col are independent of each other or are masked additively with uniformly
random elements, making them indistinguishable from uniform.
With the same ideas of the previous proofs, we can show that IS(1λ,xS ,FExcsk

S (x))

is indistinguishable from viewExcsk
S (x, λ) for every S. �

Algorithm 14 Simulator for Excpk

Require: 1λ, xS , FExcpk
S (x)

1: procedure IS
2: for Pi ∈ S do
3: Sample g̃i

$
←− GB , r̃i

$
←− Rq and (t̃ij

$
←− Rq)

k
j=1.

4: Sample w̃i, z̃i
$
←− R2

q .
5: if Pi = P1 then
6: Sample r̃i

$
←− Rq.

7: else
8: Sample ũi

$
←− Rq.

9: Compute r̃′i = ũi −
∑k
j=1,j 6=i tij .

10: if P2 ∈ S then
11: For each Pi 6∈ S sample z̃i, w̃i

$
←− R2

q .

12: Compute z̃ =
∑k
i=1 z̃i. If z̃ is not invertible, restart the algorithm.

13: Compute w̃ =
∑k
i=1 w̃i, such that 2w̃ = pk1 · z̃ · β2.

14: Return xS together with all the values generated.

Excsk: Analogously as before, we prove that Excsk protocol, that uses Fk-MP

functionality, securely computes FExcsk .
This protocol is symmetrical except for the output, because only P1 learns

sk1. The rest of the elements in all views are similar and are explained below:

viewExcsk
Pi

(x, λ) =

βi, si,
(ri1, ri2, . . . , ri,i−1), (ri,i+1, . . . , rik),
ui, Ri

The pair (βi, si) is Pi’s input and rij are uniformly random polynomials. The

value ui is the output of Fk-1-MP functionality to compute 2si
∏k
j=2 βj plus some

uniform elements and Ri is an additive masking of ui by Pi.
We define IS for Excsk in the simulator algorithm 15. The output of IS is:

IExcskS (1λ,xS ,FExcsk
S (x)) = {βi, si, r̃i1, (r̃i2, . . . , r̃i,i−1), (r̃i,i+1, . . . , r̃ik), ũi, R̃i}Pi∈S

Algorithm 15 Simulator for Excsk

Require: 1λ, xS , FExcsk
S (x).

1: procedure IS
2: for Pi ∈ S do
3: Sample {r̃ij $

←− Rq | j = [1, k] ∧ i 6= j} and ũi
$
←− Rq.

4: Compute R̃i = ũi −
∑k
j=2,j 6=1 r̃ij .

5: Return xS together with all the values generated.

The values r̃ij are uniformly sampled, as in the protocol. As in previous

proofs, ũi is random and indistinguishable from ui = 2si
∏k
j=2 βj +

∑k
j=1,j 6=i rji,

because rji elements are uniformly sampled by at least one honest party. There-

fore, R̃i is indistinguishable from Ri. Given this, we conclude that

IS(1λ,xS ,FExcsk
S (x))

s
≈ viewExcsk

S (x, λ). �

	Excalibur Key-Generation Protocols For DAG Hierarchic Decryption

