
(In)security Against Fault Injection Attacks for CRT-RSA Implementations

Alexandre Berzati and Cécile Canovas
CEA-LETI/MINATEC

17 rue des Martyrs
38054 Grenoble Cedex 9, France

firstname.familyname@cea.fr

Louis Goubin
Versailles Saint-Quentin-en-Yvelines University

45 Avenue des Etats-Unis
78035 Versailles Cedex, France
Louis.Goubin@prism.uvsq.fr

Abstract

Since its invention in 1977, the celebrated RSA primitive
has remained unbroken from a mathematical point of view,
and has been widely used to build provably secure encryp-
tion or signature protocols.

However, the introduction in 1996 of a new model of
attacks – based on fault injections – by Boneh, deMillo
and Lipton suggests the use of specific countermeasures to
obtain a secure RSA implementation. In the special case
of CRT implementations, many protections have been pro-
posed and most of them have been proven insufficient to en-
sure resistance against DFA. This has motivated the intro-
duction of the “infective computation” concept [18], lead-
ing to the only two implementations not broken up to now:
Ciet-Joye [10] and Giraud [8].

In the present paper, we show that the Ciet-Joye method
proposed in FDTC’2005 does not completely prevent fault
injection attacks: for a CRT-RSA with a 1024-bit modulus,
we show that 13 faulty signatures are enough to recover the
secret exponent with a probability greater than 50%, which
can be improved to 99% with 83 faulty signatures.

Keywords: CRT-RSA, fault attacks, countermeasures,
Wagner’s attack.

1. Introduction

The RSA [14] algorithm has been the most widely used
public-key cryptosystem for many years. The Chinese
Remainder Theorem applied to RSA has considerably in-
creased its efficiency and takes a part of such a success. At
the end of the nineties, Bellcore researchers first showed
that such an implementation can be endangered by fault in-
jections [5]. This paper not only introduced a new class
of side-channel attacks named Differential Fault Analysis
but also highlighted its powerful applications to Public-
Key based protocols. And CRT-RSA became a preferential

target for these attacks. A series of attacks and counter-
measures followed. The state of the art shows that only
two implementations of CRT-RSA actually remain DFA-
resistant: the Ciet & Joye algorithm [10] presented at
FDTC’05 and the patented C. Giraud’s SPA/DFA-resistant
algorithm [8, 9]. Their respective security was analyzed tak-
ing into account the published attacks. However, no formal
proof has ever been done to warranty their security.

The purpose of our paper is to show that the Ciet & Joye
algorithm is not a really secure implementation of CRT-
RSA. We prove that, under a practicable fault model, it is
possible to recover the private exponent by injecting a fault
before the CRT recombination step.

Our paper is organised as follows. The next section
presents published attacks against CRT based RSA imple-
mentations and associated countermeasures. Then we will
detail the Ciet & Joye algorithm. Finally, we will present
our attack against this algorithm and its performance analy-
sis.

2. Previous work

2.1. CRT Based RSA

Let N , the public modulus, be the product of two large
prime numbers p and q. The length of N is denoted by n.
Let e be the public exponent, coprime to ϕ(N) = (p− 1) ·
(q − 1), where ϕ(·) denotes Euler’s totient function. The
public key exponent e is linked to the private exponent d by
the equation e·d ≡ 1 mod ϕ(N). The signature on message
m is given by:

S = ṁd mod N (1)

where ṁ = µ(m) for some hash and/or deterministic
padding function µ. The improvement brought by the Chi-
nese Remainder Theorem concerns the computation of the
modular exponentiation. In CRT mode, instead of com-
puting the d-th exponentiation, two half exponentiations by
dp ≡ d mod (p− 1) and dq ≡ d mod (q − 1) are done. Let

1

iq ≡ q−1 mod p be the inverse of q in Z/pZ, the signature
S is calculated with Garner’s algorithm, denoted by CRT:

S = CRT(Sp, Sq)
= Sq + q(iq(Sp − Sq) mod p) (2)

with

{
Sp ≡ ṁdp mod p,

Sq ≡ ṁdq mod q.

This trick speeds up the computation by computing two half
exponentiations modulo a n/2-bit number instead of an ex-
ponentiation modulo a n-bit number. Because of the mul-
tiplication’s quadratic complexity, the CRT computation is
four times faster than the standard one. In both modes, the
signature S is validated by checking if:

Se ≡ ṁ mod N (3)

2.2. DFA & Countermeasures on CRT-RSA

Bellcore’s attack. In 1996, Bellcore researchers intro-
duced the Differential Fault Analysis by attacking the CRT
based implementation of RSA.They showed in [5, 6] that
if an error occurs while computing one of the two half ex-
ponentiations (i.e. Sp or Sq but not both) then, from the
faulty signature Ŝ and the correct one S, it is possible to
factor N . Indeed, assume that an error was provoked dur-
ing the computation of Sp resulting in a faulty value Ŝp,
then the signature Ŝ = CRT(Ŝp, Sq) is faulty too. More-
over, Ŝ ≡ S mod q but Ŝ 6≡ S mod p. So, only q | (Ŝ − S)
and:

q = gcd((Ŝ − S) mod N,N) (4)

This result was reduced to the mere knowledge of the faulty
signature by A. Lenstra [11], noticing that Ŝe ≡ ṁ mod q
but Ŝe 6≡ ṁ mod p:

q = gcd((Ŝe − ṁ) mod N,N) (5)

Shamir’s trick and optimizations. In [15], A. Shamir
presents a method to defeat DFA by randomizing the com-
putation of Sp and Sq and adding a checking test before re-
turning the signature. Let r be a κ-bit random value. The
cryptographic device computes:{

Srp ≡ ṁd mod (r · p)
Srq ≡ ṁd mod (r · q)

(6)

Then, we check that no error occurs during the computation
of the two half exponentiations:

1. If Srp ≡ Srq mod r, return S = CRT(Srp, Srq),

2. Else, return Error detected.

The main drawback of this method is that it requires the
knowledge of d whereas, on a real cryptographic device
that implements CRT-RSA, only dp ≡ d mod (p − 1) and
dq ≡ d mod (q − 1) are available. That is why M. Joye, P.
Paillier and S. Yen have proposed in [12] an optimization
of Shamir’s countermeasure. Let r1 and r2 be two κ-bit
random integers. The device computes:

S∗p ≡ ṁdp mod (r1 · p), S1 ≡ ṁdp mod ϕ(r1) mod r1

S∗q ≡ ṁdq mod (r2 · q), S2 ≡ ṁdq mod ϕ(r2) mod r2
(7)

Both half exponentiations are checked separately before the
CRT recombination:

1. If S1 ≡ S∗p mod r1 and S2 ≡ S∗q mod r2, return S =
CRT(S∗p , S

∗
q),

2. Else, return Error detected.

Thus, this optimization is resistant to fault injection during
the two half exponentiations and only needs classical CRT
parameters.

DFA on the recombination step. Although the previ-
ously presented countermeasures protects CRT based RSA
against perturbation of the half exponentiations, they can
be endangered by a perturbation of the CRT recombina-
tion step. This security flaw was exploited by C. Aumüller,
P. Bier, W. Fischer, P. Hofreiter and J-P. Seifert in [1]. In-
deed, if the value of Srp, Srq or irq are modified during the
recombination step, the fault is not detected by Shamir’s
method. Moreover, from the faulty signature Ŝ, the attacker
can factor N by computing gcd((Ŝe − ṁ) mod N,N).

A countermeasure against transient faults is also pre-
sented in [1]. But, S-M. Yen, S. Moon and J. Ha showed
in [20] that this countermeasure introduces another vulner-
ability. The modified CRT-RSA algorithm can be attacked
by injecting a permanent fault during the CRT recombina-
tion.

Infective computation. The concept of infective compu-
tation was introduced in 2001 by S-M. Yen, S. Kim, S. Lim
and S. Moon [18]. The idea of infective computation is to
ensure that both half exponentiations are faulty when a fault
occurs during one of them. That way, Ŝ 6≡ S mod p 6≡
S mod q and the fault can not be exploited by the gcd.
The authors suggested this countermeasure after noticing
that decisional checks can be avoided by fault injection.
Two protocols using infective computation where proposed
in [18] and broken later in [17, 19] by S-M. Yen and D. Kim.
In spite of this, the concept of infective computation was
reused later in the BOS scheme [4] and in the Ciet & Joye
algorithm [10].

2

BOS scheme. Given the flaws of previously described
algorithms, J. Blömer, M. Otto and J-P. Seifert proposed
in [4] a variant of Shamir’s trick. The modification of the
CRT recombination and the use of infective computation
have made this algorithm immune against attacks previ-
ously published. The algorithm works as follow: let t1 and
t2 be two κ-bit random integers carefully chosen1:

1. The device first computes:

t1 · p, t2 · q, t1 · t2 ·N,

d1 ≡ d mod ϕ(t1 · p), e1 ≡ d1
−1 mod ϕ(t1 · p),

d2 ≡ d mod ϕ(t2 · q), e2 ≡ d2
−1 mod ϕ(t2 · q),

2. Then, half exponentiations and CRT recombination is
computed:

S∗ = CRT(S∗p , S
∗
q) mod (t1 · t2 ·N), (8)

where

{
S∗p ≡ ṁd1 mod (t1.p)

S∗q ≡ ṁd2 mod (t2.q)

3. The returned signature S is defined as:

S ≡ (S∗)c1c2 mod N (9)

with

{
c1 ≡ (ṁ− (S∗)e1 + 1) mod (t1.p)
c2 ≡ (ṁ− (S∗)e2 + 1) mod (t2.q)

In the case of a correct execution, c1 = c2 = 1, so
S = S∗ mod N .

At first sight, this algorithm requires the knowledge of
the private exponent d which is not often the case on a cryp-
tographic device. From a security point of view, the use of
the result of the CRT recombination – S∗ – in the third step
makes it immune against attacks previously described.

Wagner’s attack. D. Wagner found a way to exploit a
vulnerability in BOS scheme [16]. The attack consists in in-
jecting a random transient byte fault in ṁ, just before com-
puting S∗p , in a way that subsequent accesses to ṁ will be
error-free. The returned signature will be faulty:

Ŝ ≡ (Ŝ∗)ĉ1 mod N

and Ŝ∗ ≡ (S∗) mod q but Ŝ∗ 6≡ (S∗) mod p. The attacker
tries to find the value of ĉ1 in order to factor N by com-
puting gcd((Ŝe − ṁĉ1) mod N,N). In [16], D. Wagner
claims that the success probability of this attack depends
on the byte location of the fault. For a 1024-bit RSA and
κ = 80 bits, the success probability is around 4%. This at-
tack has been discussed by J. Blömer and M. Otto leading
to a modified revision of the BOS scheme [3].

1According to [4], t1 and t2 must satisfy: (i) gcd(t1, t2) = 1, (ii)
gcd(d, ϕ(t1)) = gcd(d, ϕ(t2)) = 1, (iii) t1 = t2 = 3 mod 4 (iv) t1 and
t2 are square-free, (v) t2 - (t1 · p) · [(t1 · p)−1 mod (t2 · q)]

3. Ciet & Joye algorithm

This algorithm was first presented in [10] as a counter-
measure for D. Wagner’s attack against BOS scheme [16].
M. Ciet and M. Joye claimed that this algorithm was secure
against all previously published attacks against Chinese re-
maindering based implementations of RSA. But its security
was not formally proved. C. Giraud highlighted, in his PhD
thesis [9], that this algorithm was one of the two remain-
ing secure implementations of CRT-RSA against fault based
attacks. But, C. Kim and J-J. Quisquater [13] revealed a
flaw against double-fault attack and fixed it with a cost-free
method.

This algorithm is inspired by Shamir’s countermea-
sure [15], improved to avoid decisional tests by using infec-
tive computation methodology [18]. The algorithm works
as follows: let r1 and r2 be two κ-bit carefully chosen ran-
dom integers and r3 a l-bit random integer:

1. The cryptographic device first computes:

(a) p∗ = r1 · p
(b) q∗ = r2 · q
(c) iq∗ = (q∗)−1 mod p∗

(d) N = p · q

2. Then, it computes the CRT parameters:

(a) Sp∗ ≡ ṁdp mod p∗, s2 ≡ ṁdq mod ϕ(r2) mod r2

(b) Sq∗ ≡ ṁdq mod q∗, s1 ≡ ṁdp mod ϕ(r1) mod r1
(10)

The order of computation has to be carefully respected
in order to protect the algorithm against injection of
permanent random faults on ṁ.

3. The CRT recombination is applied to get S∗:

S∗ = CRT(Sp∗ , Sq∗)

4. Finally, the algorithm returns the signature S such as:

S ≡ (S∗)γ mod N


c1 ≡ (S∗ − s1 + 1) mod r1
c2 ≡ (S∗ − s2 + 1) mod r2

γ = b (r3 ·c1 + (2l − r3)·c2)
2l

c

According to [10], the secret parameters of the algorithm
(p, q, dp, dq) and the values computed during the first step
are assumed to be error-free. It means that these values are
implicitly protected against fault injection.
Moreover, several parts of this algorithm can be adapted to
the cryptographic device architecture. The length of random
values (l and κ) can be tuned to suit the length of crypto
registers. Finally, one can notice that γ is a κ-bit value.

3

4. Attack principle

4.1. Fault model

The principle of the attack is inspired by Wagner’s At-
tack on BOS scheme [16]. It consists in inserting any tran-
sient fault on an unknown byte of Sp∗ . According to [10],
the value of Sp∗ is not protected. Then, our fault model
can be considered. We have chosen such a model because it
has already been successfully applied in the smart card con-
text [2, 3, 7]. The byte modification induced by the attacker
affects the computation of S, S∗, γ and c1. It can be seen
as the addition of an error value ε to the correct one Sp∗ :

Ŝp∗ = Sp∗ ⊕ ε (11)

ε = R8 · 28i where R8 is a random byte value and i ∈
[[0; (n/2)+κ

8 − 1]] is the location of the byte modified by the
perturbation. These two values result from the effects of the
perturbation and are – a priori – not known by the attacker.

4.2. Faulty execution

The attacker corrupts the value of S∗p between the first
partial exponentiation and the CRT recombination. This
faulty value of a variable x is noted x̂.

1. The fault first infects the CRT recombination:

Ŝ∗ = CRT (Ŝp∗ , Sq∗)

2. The output of that faulty execution is:

Ŝ ≡ (Ŝ∗)γ̂ mod N

where


ĉ1 ≡ (Ŝ∗ − s1 + 1) mod r1

c2 ≡ (Ŝ∗ − s2 + 1) mod r2

γ̂ = b (r3.ĉ1 + (2l − r3).c2)
2l

c

and r3 stands for a l-bit random value

4.3. Cryptanalysis

The two half exponentiations of (10) are expressed mod-
ulo q∗ = r2 · q and p∗ = r1 · p. So, the induced asym-
metry can be explained as Ŝ∗ 6≡ S∗mod r1 and Ŝ∗ ≡
S∗ mod r2. Furthermore, (10) implies that Ŝ∗ ≡ S∗ mod q
but Ŝ∗ 6≡ S∗ mod p. So, Ŝ∗

e
≡ ṁ mod q but Ŝ∗ 6≡

ṁ mod p and, by using the final result of the faulty exe-
cution Ŝ ≡ (Ŝ∗)γ̂ mod N , we also have:{

Ŝe ≡ ṁγ̂ mod q

Ŝe 6≡ ṁγ̂ mod p
(12)

If the value of γ̂ is known by the attacker, it’s possible for
him to factor N by computing gcd((Ŝe − ṁγ̂) mod N,N).
In this case, the problem of factoringN is based on guessing
the value of γ̂.

4.4. How to guess γ̂ ?

By observing its formula, one can notice that γ̂ depends
on three parameters that are c1, c2 and r3. The application
of our fault model make us recover the value of the checks:
c1 and c2. Indeed, because of the chosen fault model, only
the result of the first half exponentiation – Ŝ∗p – is faulty. As
a consequence, using (10):{
c1 ≡ (Ŝ∗ − s1 + 1) mod r1 ≡ (1 + ε) mod r1

c2 ≡ (Ŝ∗ − s2 + 1) mod r2 ≡ 1 mod r2
(13)

The knowledge of ε makes us directly deduce the value of
c1 if no modular reduction occurs during its computation. It
needs that 0 ≤ ε < (r1 − 1). Assuming that the previous
condition is satisfied, we have c1 = 1 + ε. Hence, the value
of γ̂ only depends on the error ε and the random value r3:

γ̂ = b (r3 · c1 + (2l − r3) · c2)
2l

c = 1 + br3 · ε
2l
c (14)

At first sight γ̂ remains a κ-bit random value, but if we apply
our fault model and rewrite ε:

γ̂ = 1 + br3 ·A8 · 28i−lc (15)

In equation (15), i is unknown but, because of the previous
supposition, we can assume that the size of epsilon has to
be smaller than the size of r1 :

28(i+1) < 2κ (16)

So, we have i ∈ [[0; κ8 − 1]]. Now, we are facing two cases
that depends on the sign of (l − κ):

1. (l − κ) > 0. Then ∀i ∈ [[0; κ8 − 1]], (8i − l) < 0. It
means that r3 ·A8, which is a (l+8)-bit random value,
will be shifted to the right. Hence, the value of γ̂ will
be a (l+8)+(8i− l) = 8(i+1)-bit random value that
is located on the least significant bits: γ̂ = A(8(i+1),0).

2. (l − κ) < 0. Then, if (8i − l) < 0, γ̂ takes the pre-
viously described form. Otherwise, for (8i − l) > 0,
γ̂ remains a 8(i + 1) random value, but located in the
most significant bits: γ̂ = A(κ,κ−8(i+1)) + 1. In this
case, we can advantageously notice that γ̂ is an odd
value.

That way, we have shown that the form of γ̂ depends on the
injected error. The location of the modified byte influences
the length of the random value that composes γ̂. Obviously,

4

the value of γ̂ remains unknown, but, if i is small enough
(i.e. i ≤ 4), it can be recovered by a brute force search.
Given a faulty signature Ŝ, the attacker will try to factor
N by testing if gcd((Ŝe − ṁγ̂j) mod N,N) returns a value
different from 1, for one of the γ̂j candidates. If it fails, the
attacker has to obtain other faulty signatures until the gcd
test works.

4.5. Attack algorithm

We detail here the algorithm which implements the fault
injection attack described above.

Algorithm 1. DFA against Ciet & Joye algorithm
INPUT: ṁ, N , κ, l, Ŝ, Bf the brute force length
OUTPUT: a factor of N
1: //Whatever the sign of (l − κ), LSB case is treated
2: for γ̂j from 1 upto 2Bf

3: fact := gcd((Ŝe − ṁγ̂j) mod N,N);
4: if (fact 6= 1)
5: return fact;
6: endif
7: endfor
8: //If γ̂ is still unknown and l < κ, we search on MSB
9: if (l < κ)
10: for γ̂j from 1 upto 2Bf

11: //Bits are shifted to the MSB
12: γ̂j := (γ̂j � (κ−Bf − 1)) + 1
13: fact := gcd((Ŝe − ṁγ̂j) mod N,N);
14: if (fact 6= 1)
15: return fact;
16: endif
17: //No γ candidate suits
18: return -1;
19: endfor
20: else
21: //The algorithm finishes without factoring N
22: return -1;
23: endif

4.6. Performance

To calculate the performance of our attack, we implicitly
assume that the random values induced by the fault (i.e. the
location i and the byte value A8) are uniformly distributed
over their respective spaces. This is not exactly the case in
practice but this is a quite good assumption.

As mentioned in the previous parts, the attack works if
two conditions on the fault are respected:

1. No modular reduction must occur at the first check, so
(1 + ε) < r1. According to (16) the probability of this

event to occur can be approximate by:

Pr[(1 + ε) < r1] ≈ Pr[8(i+ 1) < κ] (17)

Knowing that i ∈ [[0; (n/2)+κ
8 − 1]],

Pr[8(i+ 1) < κ] ≈ 2 · (κ− 8)
n+ 2κ

(18)

2. γ̂ must be recoverable by brute force search. It means
that the size of γ̂ must satisfy 8(i + 1) < Bf , where
Bf stands for a computable limit for the searched bits
of γ̂ (i.e. Bf ≤ 40 bits). The probability of this event
is denoted by Pr[8(i + 1) < Bf]. But, 8(i + 1) < Bf
is equivalent to i < (Bf

8 − 1). We also know that
i ∈ [[0; (n/2)+κ

8 − 1]], as a result:

Pr[8(i+ 1) < Bf] =
2 · (Bf − 8)
n+ 2κ

(19)

One can notice that the value of ε depends on i. So, these
probabilities are not independent. As a consequence, given
a faulty signature, the success probability of our attack is
defined by:

Pr(success) ≈ Pr[8(i+ 1) < κ and 8(i+ 1) < Bf]
≈ Pr[8(i+ 1) < min(κ,Bf)] (20)

For a CRT-RSA with parameters n = 1024 bits , κ =
80 bits and Bf = 40 bits, the success probability of our
attack is about 5.4%. This result shows that our attack
against Ciet & Joye algorithm is more efficient than Wag-
ner’s one against a weaker CRT-RSA implementation. Fur-
thermore, if one wants to lengthen the random parameter
κ (i.e. κ > Bf), the success probability, will always be
at least 2 · (Bf − 8)/(n + 2κ). On the other hand, if one
chooses a short random length for κ (i.e. κ < Bf), the suc-
cess probability of the presented attack will be minimized.
But, noticing that γ is by definition a κ-bit value, its brute
force search will be dramatically shorten without consider-
ing any fault model.

In terms of fault count, 13 faulty signatures are enough to
recover the secret exponent with a probability greater than
50%. But with 83 faulty signatures, the success probability
is about 99%.

This algorithm has been successfully implemented on a
PC using the GMP Library and simulating the chosen fault
model. The results obtained have shown that the public
modulus N can be factor by applying our method.

4.7. Discussion

By analysing our proposed attack, one can notice that
the critical steps are the check computations: c1 and c2.

5

Indeed, we have shown that a fault is usable if and only
if no modular reduction occurs during the targeted check’s
computation. In this case one of the check values directly
depends on the fault’s value (see equation (13)). As a con-
sequence, forcing the modular reduction to occur can be an
idea to efficiently protect the Ciet & Joye algorithm against
our presented attack. This can be achieved by modifying
the check computations as follows. Let α be a κ-bit random
value such as α > r1 and α > r2:{

c1 ≡ [α(S∗ − s1) + 1] mod r1
c2 ≡ [α(S∗ − s2) + 1] mod r2

(21)

That way, if no error occurs during the computation, c1 and
c2 are still equal to one. But, in a case of a faulty compu-
tation, we have ∀ε > 0, α · ε > c1 and α · ε > c2. So, a
modular reduction will be done during the computation of
the checks.

5. Conclusion

In the present paper we describe a fault injection attack
against the CRT-RSA implementation proposed by M. Ciet
and M. Joye in FDTC’2005. We provide a detailed theo-
retical analysis of the attack, and implemented it on a PC
using the GMP Library. Our fault model is very simple and
very realistic. For a CRT-RSA with a 1024-bit modulus,
we show that under this fault model, 13 faulty signatures
are enough to recover the secret exponent with a probability
greater than 50%, which can be improved to 99% with 83
faulty signatures.

As a consequence, the only patent-free method to im-
plement CRT-RSA, with the expected DFA-resistance prop-
erty, has been shown to still have vulnerabilities against
fault injection attacks. We finally suggest a variant of the
Ciet & Joye method to ensure fault injection resistance. A
formal proof of this resistance property is still a challenging
open problem.

References

[1] C. Aumüler, P. Bier, W. Fischer, P. Hofreiter, and J.-P.
Seifert. Fault Attack on RSA with CRT : Concrete Re-
sults and Practical Countermeasures. In B. K. Jr., Ç.K. Koç,
and C. Parr, editors, Cryptographic Hardware and Embed-
ded Systems (CHES 2002), volume 2523 of Lecture Notes in
Computer Science, pages 260–275. Springer, 2002.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and
C. Whelan. The Sorcerer’s Apprentice Guide to Fault At-
tacks. Cryptology ePrint Archive, Report 2004/100, 2004.

[3] J. Blömer and M. Otto. Wagner’s Attack on a secure CRT-
RSA Algorithm Reconsidered. In L. Breveglieri, I. Koren,
D. Naccache, and J.-P. Seifert, editors, Fault Diagnosis and
Tolerance in Cryptography (FDTC 2006), volume 4236 of

Lecture Notes in Computer Science, pages 13–23. Springer-
Verlag, 2006.

[4] J. Blömer, M. Otto, and J.-P. Seifert. A New CRT-RSA
Algorithm Secure Against Bellcore Attack. In ACM Con-
ference on Computer and Communication Security (CCS
2003), pages 311–320. ACM Press, 2003.

[5] D. Boneh, R. DeMillo, and R. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In W. Fumy,
editor, EUROCRYPT’97, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer-Verlag, 1997.

[6] D. Boneh, R. DeMillo, and R. Lipton. On the Importance of
Eliminating Errors in Cryptographic Computations. Journal
of Cryptology, 14(2):101–119, 2001.

[7] C. Giraud. DFA on AES. In V. Rijmen, H. Dobbertin, and
A. Sowa, editors, Fourth Conference on the Advanced En-
cryption Standard (AES4), volume 3373 of Lecture Notes in
Computer Science, pages 27–41. Springer-Verlag, 2005.

[8] C. Giraud. Procédé de traitement de données impli-
quant une exponentiation modulaire et un dispositif as-
socié, March 2005. Numéro de publication: FR0503083,
WO2006103341.

[9] C. Giraud. Attaques de Cryptosystèmes Embarqués et
Contre-Mesures Associées. PhD thesis, Université de Ver-
sailles Saint-Quentin, 2007.

[10] M. Joye and M. Ciet. Practical Fault Countermeasures for
Chinese Remaindering Based RSA. In L. Breveglieri and
I. Koren, editors, Fault Diagnosis and Tolerance in Cryp-
tography (FDTC 2005), pages 124–132, 2005.

[11] M. Joye, A. Lenstra, and J.-J. Quisquater. Chinese Remain-
dering Based Cryptosystems in the Presence of Faults. Jour-
nal of Cryptology, 12(4):241–245, 1999.

[12] M. Joye, P. Paillier, and S.-M. Yen. Secure Evaluation of
Modular Functions. In R. Hwang and C. Wu, editors, 2001
International Workshop on Cryptology and Network Secu-
rity, pages 227–229, Taipei,Taiwan, 2001.

[13] C. Kim and J.-J. Quisquater. Fault Attacks for CRT Based
RSA : New Attacks, New Results and New Countermea-
sures. In Information Security Theory and Practices, Smart
Cards, Mobile and Ubiquitus Computing Systems, volume
4462 of Lecture Notes in Computer Science, pages 215–228.
Springer-Verlag, 2007.

[14] R. Rivest, A. Shamir, and L. Adleman. A Method for Ob-
taining Digital Signature and Public-Key Cryptosystems. In
Communications of the ACM, volume 21, pages 120–126,
1978.

[15] A. Shamir. Improved Method and Apparatus for Protecting
Public Key Schemes from Timing and Fault Attacks. Pre-
sented at the Rump Session of Eurocrypt’97, 1997.

[16] D. Wagner. Cryptanalysis of a provably secure CRT-RSA
algorithm. In Proceedings of the 11th ACM Conference on
Computer Security (CCS 2004), pages 92–97. ACM, 2004.

[17] S.-M. Yen and D. Kim. Cryptanalysis of Two Protocols for
RSA with CRT Based on Fault Infection. In Fault Diagnosis
and Tolerance in Cryptography (FDTC 2004), pages 381–
385, 2004. IEEE Computer Society.

[18] S.-M. Yen, D. Kim, S. Lim, and S. Moon. RSA Speedup
with Residue Number System Immune Against Hardware

6

Fault Cryptanalysis. In K. Kim, editor, Information Se-
curity and Cryptology (ISISC 2001), volume 2288 of Lec-
ture Notes in Computer Science, pages 397–413. Springer-
Verlag, 2001.

[19] S.-M. Yen, D. Kim, and S. Moon. Cryptanalysis of Two
Protocols for RSA with CRT Based on Fault Infection. In
L. Breveglieri, I. Koren, D. Naccache, and J.-P. Seifert, edi-
tors, Fault Diagnosis and Tolerance in Cryptography (FDTC
2006), volume 4236 of Lecture Notes in Computer Science,
pages 53–61. Springer-Verlag, 2006.

[20] S.-M. Yen, S. Moon, and J.-C. Ha. Hardware Fault Attack
on RSA with CRT Revisited. In C. Lim and P. Lee, editors,
Information Security and Cryptology (ICISC 2002), volume
2587 of Lecture Notes in Computer Science, pages 374–388.
Springer, 2002.

7

