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Abstract. Although Differential Fault Analysis (DFA) led to powerful
applications against public key [15] and secret key [12] cryptosystems,
very few works have been published in the area of stream ciphers.
In this paper, we present the first application of DFA to the software
eSTREAM candidate Rabbit that leads to a full secret key recovery. We
show that by modifying modular additions of the next-state function,
32 faulty outputs are enough for recovering the whole internal state in
time O

`
234

´
and extracting the secret key. Thus, this work improves

the previous fault attack against Rabbit both in terms of computational
complexity and fault number.
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1 Introduction

The stream cipher Rabbit has been selected in the final portfolio of the ECRYPT
stream cipher project (eSTREAM) [13]. It was first presented at FSE 2003 [14],
targeting both hardware and software environments. It has been selected as a
software candidate for the third evaluation phase of the project.
Rabbit has a 128-bit key (also supports 80-bit key), 64-bit initialization vector
(IV), and 513-bit internal state. Although it has been designed to be faster than
commonly used ciphers, the level of security provided by this stream cipher has
not been disregarded by the designers. Indeed, they made the efforts of a deep
security analysis [13] and published a series of white papers [1,2,3,4,5,6] to prove
the robustness of Rabbit to the well-known attacks (i.e. algebraic, correlation,
guess-and-determine, differential). Until now, only two papers discussing the
cryptographic security of Rabbit have been published. Both propose to exploit
the bias of the core function ”g”. In [7], the function ”g” was firstly shown to
be unbalanced. The resulting distinguishing attack requires the analysis of 2247

keystream sub-blocks generated from random keys and IV’s, which is higher
than the complexity of the key exhaustive search (i.e. 2128). The second ar-
ticle provides an improved distinguishing attack based on the use of the Fast
Fourier Transform (FFT) for computing the exact Rabbit keystream bias. This



reduces the complexity of the distinguishing attack from O
(
2247

)
to O

(
297.5

)
in the multi-frame extension [7]. Recently, the security of Rabbit in the context
of faults has been discussed in [23]. Under a classical fault model, the authors
demonstrated that the complete internal state can be recovered from 128 – 256
faults in O

(
238

)
steps. The attack also requires to precompute a table of size

O
(
241.6

)
bytes. From our knowledge, it was the best known attack against Rab-

bit.
In this paper, we propose a new method to exploit faults against Rabbit imple-
mentations. We show that, if an attacker is able to perturb transiently modular
additions in the next-state function, then he can recover the whole internal state
and predict the keystream. The analysis can also lead to a full key recovery if
the first two iterations of Rabbit are targeted.
We provide evidences that this attack does not only improves the previous result
in terms of fault number but in terms of complexity. Indeed, from 32 faults in-
jected according to our model, the attacker is able to recover the whole internal
state in time O

(
234

)
.

After a brief presentation of the Rabbit stream cipher, Sect. 3 provides an
overview of previous fault attacks against implementations of stream ciphers.
Then, we describe in Sect. 4 the fault model we have chosen and a complete dif-
ferential analysis of the faulty keystreams. The final part of the paper provides
the attack algorithm and an analysis of its performance.

2 The Stream Cipher Rabbit

2.1 Notations

The notations we use in this paper to describe Rabbit are extracted from the
original description of the stream cipher presented at FSE 2003 [14].

– ⊕ denotes logical XOR,
– ∧ denotes logical AND,
– ∨ denotes logical OR,
– � and � denote respectively left and right logical bit-wise shift,
– ≪ and ≫ denote respectively left and right logical bit-wise rotation,
– A[g..h] denotes the part of the vector A from bit g to bit h,
– A[k] denotes the value of A mod k.

2.2 Description of Rabbit

Rabbit is a synchronous stream cipher. It takes as input a 128-bit secret key
and a 64-bit public initialization vector (IV). For each iteration, it generates
a 128-bit pseudo-random output block. This output block, usually referred as
the keystream, is XOR-ed with a plaintext/ciphertext to perform the encryp-
tion/decryption.
The internal state of Rabbit is composed of 513 bits:



– Eight 32-bit state variables denoted by (xj,i)0≤j≤7 at iteration i,
– Eight 32-bit counters (cj,i)0≤j≤7,
– One counter carry bit φ7,i.

At epoch i = 0, the state variables and the counters are initialized with the Key
Setup and IV Setup schemes. We recall neither Key Setup nor IV Setup schemes
since our attack does not rely on the initialization process. Further details are
provided in [14,13].
Then, for i ≥ 1, state variables and counters are updated according to the
following schemes. Each iteration produces 128 bits of the keystream.

Next-State Function.

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16)
x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16)
x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16)
x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16)
x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i

Where gj,i is defined by the following expression:

gj,i = (xj,i + cj,i+1)
2 ⊕

(
(xj,i + cj,i+1)

2 � 32
)

mod 232 (1)

All additions are performed modulo 232 and squaring modulo 264.

Counter System.

c0,i+1 = c0,i + a0 + φ7,i mod 232, (2)
cj,i+1 = cj,i + aj + φj−1,i+1 mod 232, for 0 < j < 8.

where the counter carry bit φj,i+1 is obtained as follows:

φj,i+1 =


1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0,

1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0,

0 otherwise

Furthermore, the constants (aj)0≤j≤7 are defined as:

– a0 = a3 = a6 = 0x4D34D34D,
– a1 = a4 = a7 =0xD34D34D3,
– a2 = a5 = 0x34D34D34.



Extraction Scheme. For each iteration i of the next-state function, the current
output keystream si

[127..0] is extracted as follows:

si
[15..0] = x0,i

[15..0] ⊕ x5,i
[31..16]

si
[31..16] = x0,i

[31..16] ⊕ x3,i
[15..0]

si
[47..32] = x2,i

[15..0] ⊕ x7,i
[31..16]

si
[63..48] = x2,i

[31..16] ⊕ x5,i
[15..0]

si
[79..64] = x4,i

[15..0] ⊕ x1,i
[31..16]

si
[95..80] = x4,i

[31..16] ⊕ x7,i
[15..0]

si
[111..96] = x6,i

[15..0] ⊕ x3,i
[31..16]

si
[127..112] = x6,i

[31..16] ⊕ x1,i
[15..0]

2.3 Previous Work on Rabbit

The stream cipher Rabbit has been designed to be faster than commonly used
ciphers and to justify a key size of 128 bits for encrypting up to 264 blocks of
plaintext. In a series of white papers [1,2,3,4,5,6] and in [14], the designers gave
convincing arguments to claim that Rabbit is resistant against algebraic, corre-
lation, differential, guess-and-determine, and statistical attacks. Particularly, in
[13], authors claim that Rabbit is immune to the replacement of all additions
performed in the next-state function by XORs (see Sect. 2.2). Indeed, since all
possible byte-wise combinations of the output depend on at least four different
g-functions, they conclude that ”it seems to be impossible to verify a guess of
fewer that 128 bits against the output”.
In 2007, J-P. Aumasson raised a statistical weakness on Rabbit and more specif-
ically on the core function ”g” [7]. Although this function, based on a modular
square, was expected to be strongly non-linear, J-P. Aumasson highlighted the
non-uniformity of the bit distribution given a random initial state. The com-
plexity of the resulted distinguishing attack is about O

(
2247

)
which is much

bigger than the complexity of a key exhaustive search (i.e. 2128). That is why
he concluded that the bias of the function ”g” does not represent a real threat
for Rabbit. Inspired by this work, L. Yi et al. used Fast Fourier Transformed
(FFT) to compute the exact bias of Rabbit’s keystream based on the bias of ”g”
[28]. That way, the distinguishing attack complexity equals to O

(
2158

)
, which

is much closer to the key exhaustive search complexity. Moreover they extended
their distinguishing attack to a multi-frame key recovery attack. This evolution
has a O

(
232

)
memory complexity and O

(
297.5

)
time complexity. It is the first

known key-recovery attack on Rabbit.
The first paper about the robustness of Rabbit implementations in the context
of faults is due to A. Kirkanski and A. M. Youssef at SAC 09 [23]. They showed
that by randomly flipping bits of the internal state, an attacker is able to recover
the whole internal state from 128 – 256 faulty keystreams in O

(
238

)
steps with



a precomputed table of size O
(
241.6

)
bytes. Nevertheless, the analysis does not

succeed if more than one bit of the internal state is flipped at a time. Further-
more the proposed fault analysis is limited to the recovery of the sole internal
state.
In this paper, we propose to improve these results by considering another fault
model. This new fault model is inspired by the design change studied in the
context of a guess-and-verify attack [13]. Under this model, we prove that an
attacker can completely recover the internal state from 32 faulty keystreams and
in time O

(
234

)
. The attack can also lead to a full secret key recovery (see Sect.

4.6).

3 Fault Attacks on Stream Ciphers

At the end of the nineties, a new class of active side channel attack appeared
when Bellcore researchers proposed a way for recovering secret data by perturb-
ing the behavior of public key cryptographic algorithms [15]. Then E. Biham
and A. Shamir [12] proposed an application to the DES and named this class of
attack Differential Fault Analysis (DFA).
Although fault attacks have been shown to be powerful against implementations
of both public key [8,27,16] and secret key cryptosystems [12,18,24], few attacks
have been published against the implementation of stream ciphers.
J. Hoch and A. Shamir [21] first addressed the issue of injecting fault to perturb
the behavior of stream ciphers. They published in [21] a method for exploiting
perturbations of LFSR based stream ciphers, and successful applications to LILI-
128, SOBER-t32 and RC4. The fault attack against RC4 was later improved by
Biham et al. [11]. In this paper, they showed how to use faults for setting the
internal state of RC4 in an ”impossible” state and a way to exploit it. Thus,
they improved previous results both in terms of fault number and in terms of
complexity. So, they concluded that the simplicity of the design of RC4 makes
it weak against fault attacks.
The security against perturbations of the pseudo-random bit generator A5/1 has
also been evaluated [20]. This stream cipher used in GSM networks for its cheap
and efficient hardware implementation is composed of three LFSRs. The authors
suggested to stop one of the shift register from clocking at a given moment and
exploit the faulty output. According to this model, the use of faults speeds up
the previous resynchronization attack on A5/1 by a factor 100.
A fault attack against Trivium was presented at FSE 2008 [22]. This hardware
eSTREAM candidate is based on a 288-bit internal state split into three non-
linear shift registers. The principle of this DFA is to perturb the internal state
by flipping one bit at a random position. Then, the attacker obtains a system
of equations in the internal state bits and takes advantage of the simplicity of
the Trivium non-linear feedback function for solving it. According to this fault
model, 43 fault injections (12 in the optimized version) are enough for recovering
the secret key and the IV. This attack against Trivium is also the first applica-
tion of DFA to a non-linear shift register based stream cipher.



A variant of an other eSTREAM finalist, Grain-128, has been evaluated in the
context of fault attacks [10]. From an average of 24 consecutive bit-flips in the
Grain-128 LFSR, A. Berzati et al. showed that it is possible to recover the
secret key in a couple of minutes. Since the best known mathematical attack
against Grain-128 is the brute force key-search, fault injections dramatically
improve the efficiency of the key recovery.
The fault attack against Rabbit presented at SAC 09 [23] and the one proposed
in this paper complete the state-of-the-art of fault attacks against stream ciphers
(see Sect. 2.3).

4 Fault Attack on Rabbit

4.1 Preliminaries

Theorem 1. If an attacker knows the values of the (gj,i)0≤j≤7 for two consec-
utive iterations i and i + 1, then he can reduce the number of candidates for the
remaining part of the internal state from 2256+1 to 80 in average, and predict
the keystream.

Proof. We assume that the attacker knows all the values of (gj,i−1)0≤j≤7 and
(gj,i)0≤j≤7. From these values, he can compute respectively (xj,i)0≤j≤7 and
(xj,i+1)0≤j≤7 by using the relations described in Sect. 2.2.
To completely determine the internal state at iteration i + 1, the attacker has
to find the counter variables (cj,i+1)0≤j≤7 and the carry bit φ7,i+1. But, the
counters are the input of the function g (see (1)). Although this function is not
bijective [7], previous results [28] emphasized by our own experimentation have
shown that there are in average only 1.59 possible inputs that map to the same
output gi,j . Hence, as the attacker already knows all the (gj,i)0≤j≤7 and a part
of the input (xj,i)0≤j≤7, he will find in average 1.59 candidate values for each
cj,i+1. As a consequence, he will find only 1.598 = 40 candidate values for all
the (cj,i+1)0≤j≤7 among 28·32. Then, it remains the carry bit φ7,i+1 that can
be found by exhaustive search or by comparing c7,i+1 to a7

3. Thus the average
number of candidates for the remaining part of the keystream is 2× 40 = 80 �

4.2 Motivations

To evaluate the level of security of Rabbit, the designers have considered in [13] a
guess-and-verify attack on a weak version of Rabbit. Indeed, they slightly mod-
ified the design of Rabbit by replacing all additions performed in the next-state
function by XORs (see Sect. 2.2). Under this assumption they showed that this
weaker Rabbit was also immune against this kind of attack since all possible byte-
wise combinations of the output depend on at least four different g-functions.

3 Indeed, if c7,i+1 < a7, it means that a modular reduction occurs in the addition, and
then φ7,i+1 = 1



But authors have not considered the security of Rabbit if only one addition is
punctually replaced by a XOR. In the following study, we show that this state
can be obtained by injecting faults and that it can be exploited to recover the
secret key.

4.3 Fault Model

The principle of our attack is based on the recovery of all the values of (gj,i)0≤j≤7,
for two consecutive iterations. Then Theorem 1 is applied to predict the key-
stream. These values are involved in the next-state function (see Sect. 2.2), as a
consequence, we have chosen to perturb the behavior of that specific function.
According to the next-state scheme, the computation of each xj,i+1 requires two
consecutive modular additions (i.e. mod 232) that involves three values: gj,i ,
g(j+7)[8],i and g(j+6)[8],i. In our fault model, we assume that the attacker is able
to perturb transiently one of these additions such that it becomes a bit-wise XOR
only for the current operation. Indeed, all subsequent additions performed must
result error-free. As several faults are necessary for recovering the key, the at-
tacker must have the ability to run the stream cipher with the same initialization
vector (not necessarily chosen). Like this, the state remains always the same.
Moreover we suppose the attacker can choose the iteration i and the index j of
the affected value xj,i+1 and which addition will be corrupted. This implies a
preliminary fault setup stage. First as the algorithm implementation is software,
the operations are executed sequentially and locating the time of the computa-
tion of the chosen value xj,i+1 is possible. A transient fault generated by power
glitches or light stimulation can produce various effects [9,19,26,25]. In our case,
the transformation of addition to XOR can occur by two ways:

– Corruption of the carry register: if it is cleared, the addition is equivalent to
a binary addition, i.e. an exclusive or, if the carry is set to 1, the addition
is changed into a binary addition followed by a complement operation.

– Corruption of the processed code: The non volatile memory where the op-
erating code is supposed to be stored can be modified while the reading of
the memory is performed. For example, from the instruction set of the 8051
microprocessor, we can see that the code for ADD is 0x20 while it is 0x60 for
XRL, so only one bit is distinctive. Let’s note that the fetch code can also be
corrupted in the cache memory of the internal register of the CPU.

If the attacker has a reference device, he can precompute the different expected
bitstreams with a known key and compare the faulty ciphertexts until he obtains
the setup corresponding to the fault model.
Otherwise, among the different faulty ciphertexts obtained by the attacker, some
of them correspond to our fault model, and some others must be discarded. As
our model corresponds to only 32 different faults, the attacker must only obtain
32 different faulty ciphertexts and can thus try the different combinations (see
Appendix B).
Depending on the modified addition, the faulty state variable x̂j,i+1 can be
expressed by:



– If j is even,

x̂j,i+1 =


(
gj,i +

(
g(j+7)[8],i ≪ 16

))
⊕

(
g(j+6)[8],i ≪ 16

)
or

(
gj,i ⊕

(
g(j+7)[8],i ≪ 16

))
+

(
g(j+6)[8],i ≪ 16

)
– Else, if j is odd,

x̂j,i+1 =


(
gj,i +

(
g(j+7)[8],i ≪ 8

))
⊕ g(j+6)[8],i

or
(
gj,i ⊕

(
g(j+7)[8],i ≪ 8

))
+ g(j+6)[8],i

In Rabbit, the output keystream si
[127..0] depends on the values of the internal

state. Thus, depending on which x̂j,i that is perturbed, the output keystream
will be infected as:

– If j is even, then the faulty part of the keystream is ŝi
[(16·(j+2)−1)..(16·j)],

– Else, if j is odd, the faulty parts of the keystream are
ŝi

[16·((j−2)[8]+1)−1..16·(j−2)[8]] and ŝi
[16·((j+3)[8]+1)−1..16·(j+3)[8]]

This effect of the fault is helpful in case of a wrong time location. Indeed by
computing si

[127..0]⊕ ŝi
[127..0] and analyzing the position of non-zero values, one

can immediately identify the state variable that has been infected by the fault
during its update.

4.4 Fault Analysis

In the previous section, we have detailed the fault model used to perform our
attack and the different ways to practice it. In this section, we provide the
different steps for exploiting a set of faulty outputs.

Useful Propositions. This section provides some propositions that are used
in the following description of our fault attack.

Proposition 1. For all pairs (x, y) ∈ (Z/nZ)2, the resulted carry vector of the
operation x + y mod 2n, denoted by Carry (x, y), can be obtained by computing:

Carry (x, y) = (x + y)⊕ (x⊕ y) (3)

Proof. This is just a rewriting of the additional carry definition.

Proposition 2. For all pairs (x, y) ∈ (Z/nZ)2, the i-th carry bit of the operation
x + y mod 2n, Carryi(x, y), can be defined recursively as:

– For i = 0, Carry0(x, y) = 0
– For i = 1, Carry1(x, y) = x0 ∧ y0

– For 1 < i ≤ n, Carryi(x, y) = xi−1 ∧ yi−1 ∨
(
Carryi−1(x, y) ∧ (xi−1 ∨ yi−1)

)



Proof. This is the formula of the additive carry propagation.

Proposition 3. For all triplets (x, y, z) ∈ (Z/nZ)3, we have:

(x + y + z)⊕ ((x + y)⊕ z) = Carry (x + y, z) (4)

Proof. This equality is a direct consequence of Proposition 1.

Proposition 4. For all triplets (x, y, z) ∈ (Z/nZ)3, we have:

(x + y + z)⊕ ((x⊕ y) + z) (5)
= Carry (x + y, z)⊕ Carry (x⊕ y, z)⊕ Carry (x, y)

Proof. This is also a consequence of Proposition 1. For a given triplet (x, y, z) ∈
(Z/nZ)3, x + y + z can be written as:

x + y + z = (x + y)⊕ z ⊕ Carry (x + y, z)
= x⊕ y ⊕ Carry (x, y)⊕

z ⊕ Carry (x + y, z)

Moreover, ((x⊕ y) + z) = x⊕ y ⊕ z ⊕ Carry (x⊕ y, z). Finally, we have:

(x + y + z)⊕ ((x⊕ y) + z)
= x⊕ y ⊕ z ⊕ Carry (x, y)⊕ Carry (x + y, z)⊕

x⊕ y ⊕ z ⊕ Carry (x⊕ y, z)
= Carry (x + y, z)⊕ Carry (x⊕ y, z)⊕ Carry (x, y)

Differential Analysis. Fault attacks are often based on exploiting differences
between a correct and a faulty output. Our attack is not different from it. We
assume that the attacker is able to access the keystream4. Hence to perform the
analysis, he differentiates the faulty keystream block with a correct block. In
Sect. 4.3, we concluded that a fault injected according to our model only infects
32 bits of the output keystream. As a consequence, the difference is null except
for the 32 infected bits:

– If j is even, then

s
[(16·(j+2)−1)..(16·j)]
i ⊕ ŝi

[(16·(j+2)−1)..(16·j)]

= x
[31..0]
j,i ⊕ x̂

[31..0]
j,i (6)

and 0 elsewhere,

4 The attacker knows a pair plaintext/ciphertext



– Else, if j is odd, then

s
[16·((j−2)[8]+1)−1..16·(j−2)[8]]

i ⊕ ŝi
[16·((j−2)[8]+1)−1..16·(j−2)[8]]

= x
[15..0]
j,i ⊕ x̂

[15..0]
j,i , (7)

s
[16·((j+3)[8]+1)−1..16·(j+3)[8]]

i ⊕ ŝi
[16·((j+3)[8]+1)−1..16·(j+3)[8]]

= x
[31..16]
j,i ⊕ x̂

[31..16]
j,i (8)

and 0 elsewhere,

Furthermore, depending on the modular addition that has been modified, the
difference x

[31..0]
j,i ⊕ x̂

[31..0]
j,i can be reformulated thanks to Propositions 3 and 4.

As an example, we obtain for the perturbation of the second addition:

– If j is even,

x
[31..0]
j,i ⊕ x̂

[31..0]
j,i

= Carry ((gj,i−1 + g(j+7)[8],i−1 ≪ 8), g(j+6)[8],i−1) (9)

– Or if j is odd,

x
[31..0]
j,i ⊕ x̂

[31..0]
j,i

= Carry ((gj,i−1 + g(j+7)[8],i−1 ≪ 16), g(j+6)[8],i−1 ≪ 16) (10)

Similar expressions can be obtained if the first addition is perturbed by applying
Proposition 4. The complete system of equations obtained after gathering faulty
outputs modified at different locations in the next-state function is described
in Appendix A. Hence, the differential fault analysis of the faulty output pro-
vides a set of particular equations that involves carries from the computation of
additions in the next-state function (see Sect. 2.2).

Carry Analysis. The purpose of the attack is to use faults to recover the values
of (gj,i)0≤j≤7. Thus, the attacker has modified both first and second modular
additions in the next-state function one-by-one at iteration i for all 0 ≤ j ≤ 7.
This means that the attacker has to gather 8 + 8 = 16 faulty keystream blocks
modified at the same iteration i. Hence, the attacker can extract a system of
equations that involves all the (gj,i)0≤j≤7 (see Appendix A). The number of ob-
tained binary equations is5 16 × 31 = 496 for 8 × 32 = 512 binary unknowns
(gj,i)0≤j≤7.
Because of the carry propagation, the degree of multivariate polynomials in the
equations increases with the depth of the carry bit to analyze (i.e. the degree
of the multivariate polynomial obtained by expressing Carryi is i + 1). So, re-
linearization method like XL algorithm [17] are not relevant. The best way we

5 ∀(x, y) ∈
`
Z/232Z

´2
, Carry0(x, y) = 0, so the number of binary equations that results

from a carry is 31



found to solve this system is performing an exhaustive search on each 8-bit parts
of xj,i+1 ⊕ x̂j,i+1 and so, on the 4 resulting sub-equations:

xj,i+1 ⊕ x̂j,i+1 ⇒



xj,i+1⊕x̂
[7..0]
j,i+1

xj,i+1⊕x̂
[15..8]
j,i+1

xj,i+1⊕x̂
[23..16]
j,i+1

xj,i+1⊕x̂
[31..24]
j,i+1

(11)

Depending on the infected modular addition, each 8-bit sub-equation may have
two different expressions (see Appendix A) that involves 8 bits of gj,i, g(j+7)[8],i,

and g(j+6)[8],i. As an example, for the expression x0,i+1 ⊕ x̂
[7..0]
0,i+1, the attacker

will simultaneously search g
[7..0]
0,i , g

[23..16]
7,i and g

[23..16]
6,i that satisfy:

∆1 = Carry
((

g
[7..0]
0,i + g

[23..16]
7,i

)
, g

[23..16]
6,i

)
∆2 = Carry

((
g
[7..0]
0,i + g

[23..16]
7,i

)
, g

[23..16]
6,i

)
⊕ Carry

((
g
[7..0]
0,i ⊕ g

[23..16]
7,i

)
, g

[23..16]
6,i

)
⊕ Carry

(
g
[7..0]
0,i , g

[23..16]
7,i

)
where ∆1 and ∆2 are equal to x0,i+1 ⊕ x̂

[7..0]
0,i+1 respectively when the second and

first modular additions of the next state function are modified. Then, four pairs
of equations have to be solved for each 0 ≤ j ≤ 7. So, the obtained system of
equations is considered as a 8-bit system of 2×4×8 = 64 equations of 8×4 = 32
unknowns, as each gj,i is split in four 8-bit windows.
Solving each 8-bit sub-equation requires to search simultaneously 8 bits of three
gj,i. Moreover sub-equations from bit 8 to 31, the attacker has to speculate on
Carry7(gj,i, g(j+7)[8],i), Carry15(gj,i, g(j+7)[8],i) and Carry23(gj,i, g(j+7)[8],i) since
their values are unknown at the beginning of the search. As a consequence, for
each j, the computational complexity equals to O

(
4× 23×8+3

)
= O

(
229

)
. To

solve the whole system, the resolution has to be performed for all the eight j.
So, the computational complexity of the resolution is O

(
232

)
.

In order to study the characteristics of the system, and particularly, if the number
of solutions for all the (gj,i)0≤j≤7 is bounded, we have randomly generated 20000
possible faulty outputs and counted the number of solutions provided by the
system of equations. The experimental results show that the real 32-bit system of
equations has an average of 213.72 solutions. To recover the whole state of Rabbit,
two systems from consecutive iterations have to be solved. Hence, the average
number of possible solutions for (gj,i−1)0≤j≤7 and (gj,i)0≤j≤7 is 22×13.72 = 227.44.
By combining these results with Theorem 1, the number of possible Rabbit states
is the number of (gj,i)0≤j≤7 obtained for two consecutive iterations multiplied
by the number of associated ((cj,i+1)0≤j≤7 and φ7,i+1) found to complete the
internal state: 227.44 × 80 ≈ 234.



Finally, for determining the attacked Rabbit state, at iteration i + 1, among
the 234 candidates, the attacker has just to compute the corresponding internal
state

(
(xj,i+1)0≤j≤7, (cj,i+1)0≤j≤7, φ7,i+1

)
, generate the output keystream block

for iterations i + 1 and i + 2, for each candidate, and compare it to the attacked
Rabbit keystream at same iterations.

4.5 Attack Algorithm

Algorithm. Our fault attack against Rabbit can be divided into 5 distinguish-
able steps that have been presented in previous sections. This paragraph provides
a summary that lists these steps:

Step 1: Gather faulty outputs, for iterations i and i+1, by perturbing one-by-
one, all the sixteen additions of the next-state function. As a consequence,
the attacker has to execute (with the same initialization vector) and perturb
the Rabbit algorithm according to our model 2× 16 = 32 times,

Step 2: Differentiate the faulty outputs ŝ
[127..0]
i and ŝ

[127..0]
i+1 , with correct out-

puts, si
[127..0] and si+1

[127..0]. Then, check that faults were correctly injected
(see Sect. 4.4),

Step 3: Built two systems of equations (see Appendix A) from the difference
between faulty and correct outputs at iteration i and i + 1. Then, recover
possible candidates for (gj,i−1)0≤j≤7 and (gj,i)0≤j≤7. Compute (xj,i)0≤j≤7

and (xj,i+1)0≤j≤7,
Step 4: Solve (cj,i+1)0≤j≤7 and φ7,i+1 from previously recovered (gj,i−1)0≤j≤7

and (gj,i)0≤j≤7 (see Theorem 1),
Step 5: For each possible Rabbit state candidate at iterations i + 1, compare

the output keystream to the expected one until they are equal. When it is
satisfied, the attacker has recovered the whole Rabbit state at iteration i+1
and can predict the subsequent keystream blocks.

Complexity. The efficiency of a fault attack is not only based on the fault
model but in the number of faults to inject for obtaining secret information.
Theoretically, to have an exploitable number of equations and performing the
resolution, the attacker has to inject 32 faults that suits the model, at different
locations of the next-state function and two consecutive iterations of the algo-
rithm. In practice, the fault number can be more important, depending on its
ability for reproducing the attack and the targeted device (see Sect. 4.3).
In terms of computational complexity, the overall complexity of the attack is
dominated by the complexity for testing the possible solutions obtained from
the differentiation of faulty outputs. So, the computational complexity of our
attack is O

(
234

)
. Moreover, since our analysis does not require any precompu-

tation, the memory complexity of our fault attack is negligible compared to A.
Kirkanski and A. M. Youssef proposal [23]. Hence, our new fault attack improves
the best known time complexity from 238 to 234 [23] with a negligible memory
consumption.



4.6 Extension to a full key recovery

The fault attack against Rabbit presented in this article allows the attacker to
recover the whole Rabbit state at a given iteration i. As we previously noticed, it
can be used to predict the keystream, but, if i is small enough, the attacker can
recover the secret key. According to [28], if i = 2 then the attacker can recover
the secret key used to generate the keystream in time O

(
232

)
. To do it, the

attacker guesses the values of the missing φi,j ’s to revert the Rabbit next-state
function (see Sect. 2.2) and the key setup scheme. More details about the key
recovery are provided in [28]. Hence, if i = 2 the complexity of this additional
step is dominated by the full internal state recovery, and so, the global time
complexity of this attack remains O

(
234

)
.

5 Conclusion

This paper introduces an improved fault attack against implementations of Rab-
bit. Our theoretical results emphasized by our experimentation show that the
fault analysis reduces the best known attack complexity against Rabbit from
O

(
238

)
to O

(
234

)
[23]. This improvement is also effective in terms of mem-

ory consumption. Moreover, our attack requires only 32 faulty outputs, and we
provide evidence that the fault model is practicable on various devices. The al-
gorithm can be protected against faults by adding redundancy in the next-state
function. As our attack only uses an addition corruption, the result of the addi-
tions can also be doubled and computed differently. Since this operation is faster
than ”g” function, this countermeasure does not increase the global complexity
of Rabbit.
As a consequence, we can conclude that Differential Fault Analysis is a real
threat for Rabbit implementations. Hence, protecting it against DFA is now
challenging.

References

1. Cryptico A/S. Algebraic analysis of Rabbit. White paper, 2003.
2. Cryptico A/S. Analysis of the key setup function in Rabbit. White paper, 2003.
3. Cryptico A/S. Hamming weights of the g-function. White paper, 2003.
4. Cryptico A/S. Periodic properties of Rabbit. White paper, 2003.
5. Cryptico A/S. Second degree approximations of the g-function. White paper, 2003.
6. Cryptico A/S. Security analysis of the IV-setup for Rabbit. White paper, 2003.
7. J.P. Aumasson. On a Bias of Rabbit. In State of the Art of Stream Ciphers (SASC

2007), 2007.
8. F. Bao, R.H. Deng, A. Jeng, A.D. Narasimhalu, and T. Ngair. Breaking Public

Key Cryptosystems on Tamper Resistant Devices in the Presence of Transient
Faults. In M. Lomas and B. Christianson, editors, Security Protocols, volume 1361
of Lecture Notes in Computer Science, pages 115–124. Springer-Verlag, 1998.

9. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s
Apprentice Guide to Fault Attacks. Cryptology ePrint Archive, Report 2004/100,
2004.



10. A. Berzati, Cécile Canovas, G. Castagnos, B. Debraize, L. Goubin, A. Gouget,
P. Paillier, and S. Salgado. Fault Analysis of Grain-128. In IEEE International
Workshop on Hardware-Oriented Security and Trust (HOST 2009). IEEE Com-
puter Society, 2009.

11. E. Biham, L. Granboulan, and P. Nguyen. Impossible Fault Analysis of RC4
and Differential Analysis of RC4. In H. Gilbert and H. Handschuh, editors, Fast
Software Encryption (FSE 2005), volume 3557, pages 359–367. Springer, 2005.

12. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In Crypto’97, 1997.

13. M. Boesgaard, M. Vesterager, T. Christiensen, and E. Zenner. The stream cipher
Rabbit. eStream Report 2005/024, the ECRYPT stream cipher project, 2005.

14. M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and O. Scavenius.
Rabbit: A High-Performance Stream Cipher. In T. Johansson, editor, Fast Software
Encryption (FSE 2003), volume 2887 of Lecture Notes In Computer Science, pages
307–329. Springer, 2003.

15. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults. In W. Fumy, editor, EUROCRYPT’97, volume 1233
of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag, 1997.

16. E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier. Why One Should Also
Secure RSA Public Key Elements. In L. Goubin and M. Matsui, editors, Cryp-
tographic Hardware and Embedded Systems (CHES 2006), volume 4249 of Lecture
Notes in Computer Science, pages 324–338. Springer-Verlag, 2006.

17. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor,
Advances in Cryptology - Eurocrypt 2000, International Conference on the Theory
and Application of Cryptographic Techniques, volume 1807 of Lecture Notes in
Computer Science, pages 392–407. Springer, 2000.

18. P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on AES. In
M. Yung, Y. Han, and J. Zhou, editors, Applied Cryptography and Network Security
(ANCS 2003), volume 2846 of Lecture Notes in Computer Science, pages 293–306.
Springer, 2003.

19. C. Giraud. A survey on fault attacks. In CARDIS 2004, Smart Card Research and
Advanced Applications IV, pages 159–176, 2004.

20. M. Gomulkiewicz, M. Kutilwoski, and P. Wlaz. Synchronization Fault Analysis
for Breaking A5/1. In Sotiris E. Nikoletseas, editor, Experimental and Efficient
Algorithms (WEA 2005), volume 3503 of Lecture Notes in Computer Science, pages
415–427. Springer, 2005.

21. J. Hoch and A. Shamir. Fault Analysis of Stream Ciphers. In M. Joye and J-J.
Quisquater, editors, Cryptographic Hardware and Embedded Systems (CHES 2004),
volume 3156 of Lecture Notes in Computer Science, pages 240–253. Springer, 2004.

22. M. Hojsik and B. Rudolf. Differential Fault Analysis of Trivium. In Kaisa Nyberg,
editor, Fast Software Encryption (FSE 2008), volume 5086 of Lecture Notes in
Computer Science, pages 158–172. Springer, 2008.

23. A. Kirkanski and A. M. Youssef. Differential Fault Analysis of Rabbit. In Selected
Areas in Cryptography (SAC 2009), Lecture Notes in Computer Science, pages
200–217. Springer, 2009.

24. G. Piret and J-J. Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In C. Paar, Ç.K. Koç,
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A System Extracted

We assume that the attacker has injected a fault, at iteration i + 1, on different
modular additions of the next-state function.

A.1 First Set of Equations

By modifying the second addition for all eight equations of the next-state func-
tion at iteration i + 1, computing the difference si+1 ⊕ ˆsi+1 (see Sect. 4.4), and
using Proposition 3 the attacker obtains the following set of equations:

x0,i+1 ⊕ x̂0,i+1 = Carry((g0,i + (g7,i ≪ 16)),
(g6,i ≪ 16))

x1,i+1 ⊕ x̂1,i+1 = Carry ((g1,i + (g0,i ≪ 8)) , g7,i)
x2,i+1 ⊕ x̂2,i+1 = Carry((g2,i + (g1,i ≪ 16)),

(g0,i ≪ 16))
x3,i+1 ⊕ x̂3,i+1 = Carry ((g3,i + (g2,i ≪ 8)) , g1,i)
x4,i+1 ⊕ x̂4,i+1 = Carry((g4,i + (g3,i ≪ 16)),

(g2,i ≪ 16))
x5,i+1 ⊕ x̂5,i+1 = Carry ((g5,i + (g4,i ≪ 8)) , g3,i)
x6,i+1 ⊕ x̂6,i+1 = Carry((g6,i + (g5,i ≪ 16)),

(g4,i ≪ 16))
x7,i+1 ⊕ x̂7,i+1 = Carry ((g7,i + (g6,i ≪ 8)) , g5,i)

A.2 Second Set of Equations

This second set of equations results from the perturbation of all the eight first
additions of the next-state function and the application of Proposition 4:



– If j is even, xj,i+1 ⊕ x̂j,i+1 equals to:

Carry((gj,i + (g(j+7)[8],i ≪ 16)),
(g(j+6)[8],i ≪ 16))

⊕ Carry((gj,i ⊕ (g(j+7)[8],i ≪ 16)),
(g(j+6)[8],i ≪ 16))

⊕ Carry(gj,i, (g(j+7)[8],i ≪ 16))

– Else, if j is odd, xj,i+1 ⊕ x̂j,i+1 equals to

Carry
((

gj,i +
(
g(j+7)[8],i

≪ 8
))

, g(j+6)[8]

)
⊕ Carry

((
gj,i ⊕

(
g(j+7)[8]

≪ 8
))

, g(j+6)[8]

)
⊕ Carry

(
gj,i,

(
g(j+7)[8]

≪ 8
))

B Case of unexploitable faults

Among the different faulty ciphertexts obtained by the attacker, some of them
correspond to our fault model, and some others must be discarded. This case
happens when the faults have not been injected according to our model. We have
simulated this situation by trying to solve the system of equations with wrong
ones. With our detection strategy no 8-uplet for (gj,i)0≤j≤7 was found for such
wrong systems.
So the attacker has to try to withdraw some equations until the system has so-
lutions. Thus he determines the wrong equations. Once identified, the equations
must replaced by other ones obtained from new faults.


