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Abstract

In [16], J. Patarin designed a new scheme, called “Oil and Vinegar”, for computing asymmetric
signatures. It is very simple, can be computed very fast (both in secret and public key) and requires
very little RAM in smartcard implementations. The idea consists in hiding quadratic equations in n
unknowns called “oil” and v = n unknowns called “vinegar” over a finite field K, with linear secret
functions. This original scheme was broken in [9] by A. Kipnis and A. Shamir. In this paper, we
study some very simple variations of the original scheme where v > n (instead of v = n). These
schemes are called “Unbalanced Oil and Vinegar” (UOV), since we have more “vinegar” unknowns
than “oil” unknowns. We show that, when v ≃ n, the attack of [9] can be extended, but when

v ≥ 2n for example, the security of the scheme is still an open problem. Moreover, when v ≃ n2

2 , the
security of the scheme is exactly equivalent (if we accept a very natural but not proved property) to

the problem of solving a random set of n quadratic equations in n2

2 unknowns (with no trapdoor).
However, we show that (in characteristic 2) when v ≥ n2, finding a solution is generally easy. In
this paper, we also present some practical values of the parameters, for which no attacks are known.
We also study schemes with public keys of degree three instead of two. We show that no significant
advantages exist at the present to recommend schemes of degree three instead of two. However, we
show that it is very easy to combine the Oil and Vinegar idea and the HFE schemes of [14]. The
resulting scheme, called HFEV, looks at the present also very interesting both from a practical and
theoretical point of view. In UOV, the number of vinegar variables must be > n, but in HFEV this
number can be very small or very large. The length of a UOV signature can be as short as 192 bits
and the length of a HFEV signature can be as short as 80 bits.

Note: This paper is the extended version of the paper with the same title published at EURO-
CRYPT’99.

1 Introduction

Since 1985, various authors (see [6], [8], [12], [14], [16], [17], [18], [21] for example) have suggested some
public key schemes where the public key is given as a set of multivariate quadratic (or higher degree)
equations over a small finite field K.
The general problem of solving such a set of equations is NP-hard (cf [7]) (even in the quadratic case).
Moreover, when the number of unknowns is, say, n ≥ 16, the best known algorithms are often not
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significantly better than exhaustive search (when n is very small, Gröbner bases algorithms might be
efficient, cf [5]).
The schemes are often very efficient in terms of speed or RAM required in a smartcard implementation.
(However, the length of the public key is generally ≥ 1 Kbyte. Nevertheless it is sometimes useful
to notice that secret key computations can be performed without the public key). The most serious
problem is that, in order to introduce a trapdoor (to allow the computation of signatures or to allow
the decryption of messages when a secret is known), the generated set of public equations generally
becomes a small subset of all the possible equations and, in many cases, the algorithms have been
broken. For example [6] was broken by their authors, and [12], [16], [21] were broken. However, many
schemes are still not broken (for example [14], [17], [18], [20]), and also in many cases, some very simple
variations have been suggested in order to repair the schemes. Therefore, at the present, we do not
know whether this idea of designing public key algorithms with multivariate polynomials over small
finite fields is a very powerful idea (where only some too simple schemes are insecure) or not.
In this paper, we will present two new schemes: UOV and HFEV. UOV is a very simple scheme: the
original Oil and Vinegar signature scheme (of [16]) was broken (see [9]), but if we have significantly
more “vinegar” unknowns than “oil” unknowns (a definition of the “oil” and “vinegar” unknowns can
be found in section 2), then the attack of [9] does not work and the security of this more general scheme
(called UOV) is still an open problem.

Moreover, we show that, when we have approximately n2

2 vinegar unknowns for n oil unknowns, the
security of UOV is exactly equivalent (if we accept a natural but not proved property) to the problem of

solving a random set of n quadratic equations in n2

2 unknowns (with no trapdoor). This result suggests
that some partial proof of security (related to some simple to describe and supposed very difficult to
solve problems) might be found for some schemes with multivariate polynomials over a finite field.
However, we show that most of the systems of n quadratic equations in n2 (or more) variables can be
solved in polynomial complexity... As a result, at the present, we rather recommend v ≃ 3n for example
than v ≃ n2

2 for security in UOV. We also study Oil and Vinegar schemes of degree three (instead of
two). HFEV combines the ideas of HFE (of [14]) and of vinegar variables. HFEV looks more efficient
than the original HFE scheme.

2 The (Original and Unbalanced) Oil and Vinegar of degree two

Let K = Fq be a small finite field (for example K = F2). Let n and v be two integers. The message
to be signed (or its hash) is represented as an element of Kn, denoted by y = (y1, ..., yn). Typically,
qn ≃ 2128. The signature x is represented as an element of Kn+v denoted by x = (x1, ..., xn+v).

Secret key

The secret key is made of two parts:

1. A bijective and affine function s : Kn+v → Kn+v. By “affine”, we mean that each component of
the output can be written as a polynomial of degree one in the n+ v input unknowns, and with
coefficients in K.

2. A set (S) of n equations of the following type:

∀i, 1 ≤ i ≤ n, yi =
∑

γijkaja
′
k +

∑
λijka

′
ja

′
k +

∑
ξijaj +

∑
ξ′ija

′
j + δi (S).

The coefficients γijk, λijk, ξij , ξ
′
ij and δi are the secret coefficients of these n equations. The

values a1, ..., an (the “oil” unknowns) and a′1, ..., a
′
v (the “vinegar” unknowns) lie in K. Note

that these equations (S) contain no terms in aiaj .
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Public key

Let A be the element of Kn+v defined by A = (a1, ..., an, a
′
1, ..., a

′
v). A is transformed into x = s−1(A),

where s is the secret, bijective and affine function from Kn+v to Kn+v.
Each value yi, 1 ≤ i ≤ n, can be written as a polynomial Pi of total degree two in the xj unknowns,
1 ≤ j ≤ n+ v. We denote by (P) the set of these n equations:

∀i, 1 ≤ i ≤ n, yi = Pi(x1, ..., xn+v) (P).

These n quadratic equations (P) (in the n+ v unknowns xj) are the public key.

Computation of a signature (with the secret key)

The computation of a signature x of y is performed as follows:

Step 1: We find n unknowns a1, ..., an of K and v unknowns a′1, ..., a
′
v of K such that the n equations

(S) are satisfied.

This can be done as follows: we randomly choose the v vinegar unknowns a′i, and then we compute
the ai unknowns from (S) by Gaussian reductions (because – since there are no aiaj terms – the
(S) equations are affine in the ai unknowns when the a′i are fixed).

Remark: If we find no solution, then we simply try again with new random vinegar unknowns.
After very few tries, the probability of obtaining at least one solution is very high, because
the probability for a n × n matrix over Fq to be invertible is not negligible. (It is exactly
(1 − 1

q )(1 − 1
q2
)...(1 − 1

qn−1 ). For q = 2, this gives approximately 30 %, and for q > 2, this

probability is even larger.)

Step 2: We compute x = s−1(A), where A = (a1, .., an, a
′
1, ..., a

′
v). x is a signature of y.

Public verification of a signature

A signature x of y is valid if and only if all the (P) are satisfied. As a result, no secret is needed to
check whether a signature is valid: this is an asymmetric signature scheme.

Note: The name “Oil and Vinegar” comes from the fact that – in the equations (S) – the “oil
unknowns” ai and the “vinegar unknowns” a′j are not all mixed together: there are no aiaj products.
However, in (P), this property is hidden by the “mixing” of the unknowns by the s transformation. Is
this property “hidden enough” ? In fact, this question exactly means: “is the scheme secure ?”. When
v = n, we call the scheme “Original Oil and Vinegar”, since this case was first presented in [16]. This
case was broken in [9]. It is very easy to see that the cryptanalysis of [9] also works, exactly in the
same way, when v < n. However, the cases v > n are, as we will see, much more difficult. When v > n,
we call the scheme “Unbalanced Oil and Vinegar”.

3 A short description of the attack of [9]: cryptanalysis of the case
v = n

The idea of the attack of [9] is essentially the following:
In order to separate the oil variables and the vinegar variables, we look at the quadratic forms of the
n public equations of (P), we omit for a while the linear terms. Let Gi for 1 ≤ i ≤ n be the respective
matrix of the quadratic form of Pi of the public equations (P).
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The quadratic part of the equations in the set (S) is represented as a quadratic form with a corre-

sponding 2n × 2n matrix of the form :

(
0 A
B C

)
, the upper left n × n zero submatrix is due to the

fact that an oil variable is not multiplied by an oil variable.
After hiding the internal variables with the linear function s, we get a representation for the matrices

Gi = S

(
0 Ai

Bi Ci

)
St, where S is an invertible 2n× 2n matrix.

Definition 3.1: We define the oil subspace to be the linear subspace of all vectors in K2n whose
second half contains only zeros.

Definition 3.2: We define the vinegar subspace as the linear subspace of all vectors in K2n whose
first half contains only zeros.

Lemma 1 Let E and F be a 2n×2n matrices with an upper left zero n×n submatrix. If F is invertible
then the oil subspace is an invariant subspace of EF−1.

Proof: E and F map the oil subspace into the vinegar subspace. If F is invertible, then this mapping
between the oil subspace and the vinegar subspace is one to one and onto (here we use the assumption
that v = n). Therefore F−1 maps back the vinegar subspace into the oil subspace this argument
explains why the oil subspace is transformed into itself by EF−1.

Definition 3.4: For an invertible matrix Gj , define Gij = GiG
−1
j .

Definition 3.5: Let O be the image of the oil subspace by S−1.
In order to find the oil subspace, we use the following theorem:

Theorem 3.1 O is a common invariant subspace of all the matrices Gij.

Proof:

GiG
−1
j = S

(
0 Ai

Bi Ci

)
St(St)−1

(
0 Aj

Bj Cj

)−1

S−1 = S

(
0 Ai

Bi Ci

)(
0 Aj

Bj Cj

)−1

S−1

The two inner matrices have the form of E and F in lemma 1. Therefore, the oil subspace is an invariant
subspace of the inner term and O is an invariant subspace of GiG

−1
j .

The problem of finding common invariant subspace of set of matrices is studied in [9]. Applying the
algorithms in [9] gives us O. We then pick V to be an arbitrary subspace of dimension n such that
V +O = K2n, and they give an equivalent oil and vinegar separation.
Once we have such a separation, we bring back the linear terms that were omitted, we pick random
values for the vinegar variables and left with a set of n linear equations with n oil variables.

Note: Lemma 1 is not true any more when v > n. The oil subspace is still mapped by E and F into
the vinegar subspace. However F−1 does not necessary maps the image by E of the oil subspace back
into the oil subspace and this is why the cryptanalysis of the original oil and vinegar is not valid for
the unbalanced case.
This corresponds to the fact that, if the submatrix of zeros in the top left corner of F is smaller than
n×n, then F−1 does not have (in general) a submatrix of zeros in the bottom right corner. For example: 0 3 1

1 2 2
2 1 2


−1

=
1

3

 2 −5 4
2 −2 1
−3 6 −3

 .
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However, when v − n is small, we see in the next section how to extend the attack.

4 Cryptanalysis when v > n and v ≃ n

In this section, we discuss the case of Oil and Vinegar schemes where v > n, although a direct application
of the attack described in [9] and in the previous section does not solve the problem, a modification of
the attack exists, that is applicable as long as v − n is small (more precisely the expected complexity
of the attack is approximately q(v−n)−1 · n4).

Definition 4.1: We define in this section the oil subspace to be the linear subspace of all vectors in
Kn+v whose last v coordinates are only zeros.

Definition 4.2: We define in this section the vinegar subspace to be the linear subspace of all vectors
in Kn+v whose first n coordinates are only zeros.

Here in this section, we start with the homogeneous quadratic terms of the equations: we omit the
linear terms for a while.
The matrices Gi have the representation

Gi = S

(
0 Ai

Bi Ci

)
St

where the upper left matrix is the n× n zero matrix, Ai is a n× v matrix, Bi is a v × n matrix, Ci is
a v × v matrix and S is a (n+ v)× (n+ v) invertible linear matrix.

Definition 4.3: Define Ei to be

(
0 Ai

Bi Ci

)
.

Lemma 2 For any matrix E that has the form

(
0 A
B C

)
, the following holds:

a) E transforms the oil subspace into the vinegar subspace.

b) If the matrix E−1 exists, then the image of the vinegar subspace by E−1 is a subspace of dimension
v which contains the n-dimensional oil subspace in it.

Proof: a) follows directly from the definition of the oil and vinegar subspaces. When a) is given
then b) is immediate.

The algorithm we propose is a probabilistic algorithm. It looks for an invariant subspace of the oil
subspace after it is transformed by S. The probability for the algorithm to succeed on the first try is
small. Therefore we need to repeat it with different inputs. We use the following property: any linear

combination of the matrices E1, ..., En is also of the form

(
0 A
B C

)
.

The following theorem explains why an invariant subspace may exist with a certain probability.

Theorem 4.1 Let F be an invertible linear combination of the matrices E1, ..., En. Then for any k
such that E−1

k exists, the matrix FE−1
k has a non trivial invariant subspace which is also a subspace of

the oil subspace, with probability not less than q−1
q2d−1

for d = v − n.
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Proof: The matrix F maps the oil subspace into the vinegar subspace, the image by F of the oil
subspace is mapped by E−1

k into a subspace of dimension v that contains the oil subspace – these are
due to lemma 1. We write v = n + d, where d is a small integer. The oil subspace and its image by
FE−1

k are two subspaces with dimension n that reside in a subspace of dimension n + d. Therefore,
their intersection is a subspace of the oil subspace with dimension not less than n− d. We denote the
oil subspace by I0 and the intersection subspace by I1. Now, we take the inverse images by FE−1

k of
I1: this is a subspace of I0 (the oil subspace) with dimension not less than n − d and the intersection
between this subspace and I1 is a subspace of I1 with dimension not less than n − 2d. We call this
subspace I2. We can continue this process and define Iℓ to be the intersection of Iℓ−1 and its inverse
image by FEk−1. These two subspaces have co-dimension not more than d in Iℓ−2. Therefore, Iℓ has
a co-dimension not more than 2d in Iℓ−2 or a co-dimension not more than d in Iℓ−1. We can carry on
this process as long as we are sure that the inverse image by FE−1

k of Iℓ has a non trivial intersection
with Iℓ. This is ensured as long as the dimension of Iℓ is greater than d, but when the dimension is d
or less than d, there is no guaranty that these two subspaces – that reside in Iℓ−1 – have a non trivial
intersection. We end the process with Iℓ that has dimension ≤ d that resides in Iℓ−1 with dimension
not more than 2d.
We know that the transformation (EG−1

k )−1 maps Iℓ into Iℓ−1. With probability not less than q−1
q2d−1

,
there is a non zero vector in Iℓ that is mapped to a non zero mutiple of itself – and therefore there is a
non trivial subspace of FEk−1 which is also a subspace of the oil subspace.

Note: It is possible to get a better result for the expected number of eigenvectors and with much
less effort: I1 is a subspace with dimension not less than n−d and is mapped by FE−1

k into a subspace
with dimension n. The probability for a non zero vector to be mapped to a non zero multiple of itself
is q−1

qn−1 . To get the expected value, we multiply it by the number of non zero vectors in I1. It gives

a value which is not less than (q−1)(qn−d−1)
qn−1 . Since every eigenvector is counted q − 1 times, then the

expected number of invariant subspcaes of dimension 1 is not less than qn−d−1
qn−1 ∼ q−d.

We define O as in section 3 and we get the following result for O:

Theorem 4.2 Let F be an invertible linear combination of the matrices G1; ..., Gn. Then for any k
such that G−1

k exists, the matrix FG−1
k has a non trivial invariant subspace, which is also a subspace

of O with probability not less than q−1
q2d−1

for d = v − n.

Proof:
FG−1

k = (α1G1 + ...+ αnGn)G
−1
k

= S(α1E1 + ...+ αnEn)S
t(St)−1E−1

k S−1 = S(α1E1 + ...+ αnEn)E
−1
k S−1.

The inner term is an invariant subspace of the oil subspace with the required probability. Therefore,
the same will hold for FG−1

k , but instead of a subspace of the oil subspace, we get a subspace of O.

How to find O ?
We take a random linear combination of G1, ..., Gn and multiply it by an inverse of one of the Gk

matrices. Then we calculate all the minimal invariant subspaces of this matrix (a minimal invariant
subspace of a matrix A contains no non trivial invariant subspaces of the matrix A – these subspaces
corresponds to irreducible factors of the characteristic polynomial of A). This can be done in proba-
bilistic polynomial time using standard linear algebra techniques. This matrix may have an invariant
subspace wich is a subspace of O.
The following lemma enables us to distinguish between subspaces that are contained in O and random
subspaces.

Lemma 3 If H is a linear subspace and H ⊂ O, then for every x, y in H and every i, Gi(x, y) = 0
(here we regard Gi as a bilinear form).
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Proof: There are x′ and y′ in the oil subspace such that x′ = xS−1 and y′ = yS−1.

Gi(x, y) = xS

(
0 Ai

Bi Ci

)
Styt = (x′S−1)S

(
0 Ai

Bi Ci

)
((y′S−1)S)t = x′

(
0 Ai

Bi Ci

)
(y′)t = 0.

The last term is zero because x′ and y′ are in the oil subspace.

This lemma gives a polynomial test to distinguish between subspaces of O and random subspaces.
If the matrix we used has no minimal subspace which is also a subspace of O, then we pick another
linear combination of G1, ..., Gn, multiply it by an inverse of one of the Gk matrices and try again.

After repeating this process approximately qd−1 times, we find with good probability at least one zero
vector of O. We continue the process until we get n independent vectors of O. These vectors span O.
The expected complexity of the process is proportional to qd−1 · n4. We use here the expected number
of tries until we find a non trivial invariant subspace and the term n4 covers the computational linear
algebra operations we need to perform for evey try.

5 The cases v ≃ n2

2 (or v ≥ n2

2 )

Property

Let (A) be a random set of n quadratic equations in (n+ v) variables x1, ..., xn+v. (By “random” we

mean that the coefficients of these equations are uniformly and randomly chosen). When v ≃ n2

2 (and

more generally when v ≥ n2

2 ), there is probably – for most of such (A) – a linear change of variables
(x1, ..., xn+v) 7→ (x′1, ..., x

′
n+v) such that the set (A′) of (A) equations written in (x′1, ..., x

′
n+v) is an “Oil

and Vinegar” system (i.e. there are no terms in x′i · x′j with i ≤ n and j ≤ n).

An argument to justify the property

Let 
x1 = α1,1x

′
1 + α1,2x

′
2 + ...+ α1,n+vx

′
n+v

...
xn+v = αn+v,1x

′
1 + αn+v,2x

′
2 + ...+ αn+v,n+vx

′
n+v

By writing that the coefficient in all the n equations of (A) of all the x′i · x′j (i ≤ n and j ≤ n) is zero,

we obtain a system of n · n · n+1
2 quadratic equations in the (n + v) · n variables αi,j (1 ≤ i ≤ n + v,

1 ≤ j ≤ n). Therefore, when v ≥ approximately n2

2 , we may expect to have a solution for this system
of equations for most of (A).

Remarks:

1. This argument is very natural, but this is not a complete mathematical proof.

2. The system may have a solution, but finding the solution might be a difficult problem. This is
why an Unbalanced Oil and Vinegar scheme might be secure (for well chosen parameters): there
is always a linear change of variables that makes the problem easy to solve, but finding such a
change of variables might be difficult.

3. In section 7, we will see that, despite the result of this section, it is not recommended to choose
v ≥ n2.
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6 Solving a set of n quadratic equations in k unknowns, k > n, is
NP-hard

We present in section 7 an algorithm that solves in polynomial complexity more than 99% of the sets
of n quadratic equations in n2 (or more) variables (i.e. it will probably succeed in more than 99% of
the cases when the coefficients are randomly chosen).
Roughly speaking, we can summarize this result by saying that solving a “random” set of n quadratic
equations in n2 (or more) variables is feasible in polynomial complexity (and thus is not NP-hard if
P ̸= NP ). However, we see in the present section that the problem of solving any (i.e. 100%) set of n
quadratic equations in k ≥ n variables (so for example in k = n2 variables) is NP-hard !
To see this, let us assume that we have a black box that takes any set of n quadratic equations with k
variables in input, and that gives one solution when at least one solution exists. Then we can use this
black box to find a solution for any set of n quadratic equations in n variables (and this is NP-hard).
We proceed (for example) as follows. Let (A) be a set of (n − 1) quadratic equations with (n − 1)
variables x1, x2, ..., xn−1. Then let y1, ..., yα be α more variables.
Let (B) be the set of (A) equations plus one quadratic equation in y1, ..., yα (for example the equation:
(y1 + ...+ yα)

2 = 1). Then (B) is a set of exactly n quadratic equations in (n+ 1 + α) variables. It is
clear that from the solution of (B) we will immediately find one solution for (A).

Note 1: (B) has a very special shape ! This is why there is a polynomial algorithm for 99% of the
equations without contradicting the fact that solving these sets (B) of equations is a NP-hard problem.

Note 2: For (B), we can also add more than one quadratic equations in the yi variables and we can
linearly mix these equations with the equations of (A). In this case, (B) is still of very special form
but this very special form is less obvious at first glance since all the variables xi and yj are in all the
equations of (B).

7 A generally efficient algorithm for solving a random set of n qua-
dratic equations in n2 (or more) unknowns

In this section, we describe an algorithm that solves a system of n randomly chosen quadratic equations
in n+ v variables, when v ≥ n2.
Let (S) be the following system:

(S)



∑
1≤i≤j≤n+v

aij1xixj +
∑

1≤i≤n+v
bi1xi + δ1 = 0

...∑
1≤i≤j≤n+v

aijnxixj +
∑

1≤i≤n+v
binxi + δn = 0

The main idea of the algorithm consists in using a change of variables such as:
x1 = α1,1y1 + α2,1y2 + ...+ αn,1yn + αn+1,1yn+1 + ...+ αn+v,1yn+v

...
xn+v = α1,n+vy1 + α2,n+vy2 + ...+ αn,n+vyn + αn+1,n+vyn+1 + ...+ αn+v,n+vyn+v

whose αi,j coefficients (for 1 ≤ i ≤ n, 1 ≤ j ≤ n+ v) are found step by step, in order that the resulting
system (S ′) (written with respect to these new variables y1, ..., yn+v) is easy to solve.

� We begin by choosing randomly α1,1, ..., α1,n+v.
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� We then compute α2,1, ..., α2,n+v such that (S ′) contains no y1y2 terms. This condition leads to
a system of n linear equations on the (n+ v) unknowns α2,j (1 ≤ j ≤ n+ v):∑

1≤i≤j≤n+v

aijkα1,iα2,j = 0 (1 ≤ k ≤ n).

� We then compute α3,1, ..., α3,n+v such that (S ′) contains neither y1y3 terms, nor y2y3 terms. This
condition is equivalent to the following system of 2n linear equations on the (n + v) unknowns
α3,j (1 ≤ j ≤ n+ v): 

∑
1≤i≤j≤n+v

aijkα1,iα3,j = 0 (1 ≤ k ≤ n)∑
1≤i≤j≤n+v

aijkα2,iα3,j = 0 (1 ≤ k ≤ n)

� . . .

� Finally, we compute αn,1, ..., αn,n+v such that (S ′) contains neither y1yn terms, nor y2yn terms,
..., nor yn−1yn terms. This condition gives the following system of (n − 1)n linear equations on
the (n+ v) unknowns αn,j (1 ≤ j ≤ n+ v):

∑
1≤i≤j≤n+v

aijkα1,iαn,j = 0 (1 ≤ k ≤ n)

...∑
1≤i≤j≤n+v

aijkαn−1,iαn,j = 0 (1 ≤ k ≤ n)

In general, all these linear equations provide at least one solution (found by Gaussian reductions). In
particular, the last system of n(n − 1) equations and (n + v) unknowns generally gives a solution, as
soon as n+ v > n(n− 1), i.e. v > n(n− 2), which is true by hypothesis.

Moreover, the n vectors

 α1,1
...

α1,n+v

, ...,
 αn,1

...
αn,n+v

 are very likely to be linearly independent for a

random quadratic system (S).
The remaining αi,j constants (i.e. those with n + 1 ≤ i ≤ n + v and 1 ≤ j ≤ n + 1) are randomly
chosen, so as to obtain a bijective change of variables.
By rewriting the system (S) with respect to these new variables yi, we are led to the following system:

(S ′)



n∑
i=1

βi,1y
2
i + y1L1,1(yn+1, ..., yn+v) + ...+ ynLn,1(yn+1, ..., yn+v) +Q1(yn+1, ..., yn+v) = 0

...
n∑

i=1
βi,ny

2
i + y1L1,n(yn+1, ..., yn+v) + ...+ ynLn,n(yn+1, ..., yn+v) +Qn(yn+1, ..., yn+v) = 0

where each Li,j is an affine function and each Qi is a quadratic function.
We then compute yn+1, ..., yn+v such that:

∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n+ v, Li,j(yn+1, ..., yn+v) = 0.

This is possible because we have to solve a linear system of n2 equations and v unknowns, which
generally provides at least one solution, as long as v ≥ n2. We pick one of these solutions.
It remains to solve the following system of n equations on the n unknowns y1, ..., yn:

(S ′′)



n∑
i=1

βi1y
2
i = λ1

...
n∑

i=1
βiny

2
i = λn
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where λk = −Qk(yn+1, ..., yn+v) (1 ≤ k ≤ n).
In general, this gives the y2i by Gaussian reduction.
Then, in characteristic 2, since x 7→ x2 is a bijection, we will then find a solution for the yi from this
expression of the y2i .

Note: In characteristic ̸= 2, this algorithm will also succeed when 2n is not too large (i.e. when
n ≤ 40 for example). (However, when 2n ≥ 264 and when the characteristic is ̸= 2, this algorithm
requires too many computations.)

8 A variation with twice smaller signatures

In the UOV described in section 2, the public key is a set of n quadratic equations yi = Pi (x1, ...,
xn+v), for 1 ≤ i ≤ n, where y = (y1, ..., yn) is the hash value of the message to be signed. If we use
a collision-free hash function, the hash value must at least be 128 bits long. Therefore, qn must be at
least 2128, so that the typical length of the signature, if v = 2n, is at least 3× 128 = 384 bits.
As we see now, it is possible to make a small variation in the signature design in order to obtain twice
smaller signatures. The idea is to keep the same polynomial Pi (with the same associated secret key),
but now the public equations that we check are:

∀i, Pi(x1, ..., xn+v) + Li(y1, ..., yn, x1, ..., xn+v) = 0,

where Li is a linear function in (x1, ..., xn+v) and where the coefficients of Li are generated by a hash
function in (y1, ..., yn).
For example Li(y1, ..., yn, x1, ..., xn+v) = α1x1 +α2x2 + ...+αn+vxn+v, where (α1, α2, ..., αn+v) = Hash
(y1, ..., yn||i). Now, n can be chosen such that qn ≥ 264 (instead qn ≥ 2128). (Note: qn must be ≥ 264

in order to avoid exhaustive search on a solution x). If v = 2n and qn ≃ 264, the length of the signature
will be 3× 64 = 192 bits.

9 Oil and Vinegar of degree three

9.1 The scheme

The quadratic Oil and Vinegar schemes described in section 2 can easily be extended to any higher
degree. We now present the schemes in degree three.

Variables
Let K be a small finite field (for example K = F2). Let a1, ..., an be n elements of K, called the

“oil” unknowns. Let a′1, ..., a
′
v be v elements of K, called the “vinegar” unknowns.

Secret key.
The secret key is made of two parts:

1. A bijective and affine function s : Kn+v → Kn+v.

2. A set (S) of n equations of the following type: for all i ≤ n,

yi =
∑

γijkℓaja
′
ka

′
ℓ+
∑

µijkℓa
′
ja

′
ka

′
ℓ+
∑

λijkaja
′
k+
∑

νijka
′
ja

′
k+
∑

ξijaj+
∑

ξ′ija
′
j+δi (S).

The coefficients γijk, µijkℓ, λijk, νijk, ξij , ξ
′
ij and δi are the secret coefficients of these n equations.

Note that these equations (S) contain no terms in ajakaℓ or in ajak: the equations are affine in
the aj unknowns when the a′k unknowns are fixed.
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Public key
Let A be the element of Kn+v defined by A = (a1, ..., an, a

′
1, ..., a

′
v). A is transformed into x = s−1(A),

where s is the secret, bijective and affine function from Kn+v to Kn+v. Each value yi, 1 ≤ i ≤ n, can
be written as a polynomial Pi of total degree three in the xj unknowns, 1 ≤ j ≤ n+ v. We denote by
(P) the set of the following n equations:

∀i, 1 ≤ i ≤ n, yi = Pi(x1, ..., xn+v) (P).

These n equations (P) are the public key.

Computation of a signature
Let y be the message to be signed (or its hash value).

Step 1: We randomly choose the v vinegar unknowns a′i, and then we compute the ai unknowns from (S)
by Gaussian reductions (because – since there are no aiaj terms – the (S) equations are affine in
the ai unknowns when the a′i are fixed. (If we find no solution for this affine system of n equations
and n “oil” unknowns, we just try again with new random “vinegar” unknowns.)

Step 2: We compute x = s−1(A), where A = (a1, ..., an, a
′
1, ..., a

′
v). x is a signature of y.

Public verification of a signature
A signature x of y is valid if and only if all the (P) are satisfied.

9.2 First cryptanalysis of Oil and Vinegar of degree three when v ≤ n

We can look at the quadratic part of the public key and attack it exactly as for an Oil and Vinegar of
degree two. This is expected to work when v ≤ n.

Note: If there is no quadratic part (i.e. is the public key is homogeneous of degree three), or if this
attack does not work, then it is always possible to apply a random affine change of variables and to try
again. Moreover, we will see in section 9.3 that, surprisingly, there is an even easier and more efficient
attack in degree three than in degree two !

9.3 Cryptanalysis of Oil and Vinegar of degree three when v ≤ (1 +
√
3)n and K is

of characteristic ̸= 2 (from an idea of [2])

The key idea is to detect a “linearity” in some directions. We search the set V of the values d =
(d1, ..., dn+v) such that:

∀x, ∀i, 1 ≤ i ≤ n, Pi(x+ d) + Pi(x− d) = 2Pi(x) (#).

By writing that each xk indeterminate has a zero coefficient, we obtain n · (n+ v) quadratic equations
in the (n+ v) unknowns dj .
(Each monomial xixjxk gives (xj + dj)(xk + dk)(xℓ + dℓ) + (xj − dj)(xk − dk)(xℓ − dℓ)− 2xjxkxℓ, i.e.
2(xjdkdℓ + xkdjdℓ + xℓdjdk).)
Furthermore, the cryptanalyst can specify about n − 1 of the coordinates dk of d, since the vectorial
space of the correct d is of dimension n. It remains thus to solve n ·(n+v) quadratic equations in (v+1)

unknowns dj . When v is not too large (typically when (v+1)2

2 ≤ n(n + v), i.e. when v ≤ (1 +
√
3)n),

this is expected to be easy.
As a result when v ≤ approximately (1 +

√
3)n and |K| is odd, this gives a simple way to break the

scheme.
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Note 1: When v is sensibly greater than (1 +
√
3)n (this is a more unbalanced limit than what we

had in the quadratic case), we do not know at the present how to break the scheme.

Note 2: Strangely enough, this cryptanalysis of degre three Oil and Vinegar schemes does not work
on degree two Oil and Vinegar schemes. The reason is that – in degree two –writing

∀x, ∀i, 1 ≤ i ≤ n, Pi(x+ d) + Pi(x− d) = 2Pi(x)

only gives n equations of degree two on the (n+ v) dj unknowns (that we do not know how to solve).
(Each monomial xjxk gives (xj + dj)(xk + dk) + (xj − dj)(xk − dk)− 2xjxk, i.e. 2djdk.)

Note 3: In degree two, we have seen that Unbalanced Oil and Vinegar public keys are expected
to cover almost all the set of n quadratic equations when v ≃ n2

2 . In degree three, we have a similar

property: the public keys are expected to cover almost all the set of n cubic equations when v ≃ n3

6
(the proof is similar).

10 Public key length

If we choose K = F2 then the public key is often large. So it is often more practical to choose a larger
K and a smaller n: then the length of the public key can be reduced a lot (see the examples in section
14). However, even when K and n are fixed, it is always feasible to make some easy transformations
on a public key in order to obtain the public key in a canonical way such that this canonical expression
is slightly shorter than the original expression.

� First, it is always possible to publish only the homogeneous part of the quadratic equations
(and not the linear part), because if we know the secret affine change of variables in an Oil and
Vinegar scheme with a public key P , then we can solve P (x) + L(x) = y, where L is any linear
expression with exactly the same affine change of variables. It is thus possible to publish only the
homogeneous part of P and to choose a convention for computing the linear part L of the public
key (instead of publishing L). For example, this convention can be that the linear terms of L in
the equation number i (1 ≤ i ≤ n) are computed from Hash(i||Id) (or from Hash(i||P )), where
Hash is a public hash function and where Id is the identity of the owner of the secret key.

Remark: It is also possible to decide that the linear part is always zero. However, from a
theoretical point of view, this may be less secure because we cannot exlude the possibility that
some efficient attacks exist against the homogeneous Oil and Vinegar without finding the secret
key (and without breaking the non-homogeneous case).

� On the equations, it is also possible to:

1. Make linear and bijective changes of variable x′ = A(x).

2. Compute a linear and bijective transformation on the equation: P ′ = t(P). (For example,
the new first equation can be the old first plus the old third equation, etc).

By combining easily these two transformations, it is always possible to decrease slightly the lenght
of the public key.

Idea 1: It is possible to make a change of variables such that the first equation is in a canonical
form (see [11], chapter 6). With this presentation of the public key, the length of the public key will
be approximately n−1

n times the initial length.
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Idea 2: Another idea is to use the idea of section 7, i.e. to create a square of λ × λ zeros in the
coefficients, where λ ≃

√
n+ v. With this presentation, the lenght of the public key is approximately

(n+v)2−(n+v)
(n+v)2

times the initial length.

Remark: As we will see in section 13, the most efficient way of reducing the length of the public
key is to choose carefully the values q and n.

11 Another variation of the schemes: Unbalanced Oil, Vinegar and
Salt

The scheme

Let (A) be a set of n quadratic “Oil and Vinegar” equations, as described above, with n oil variables
and v vinegar variables. We denote by (q1, ..., qn) these equations. Let (A′) be a set of r truly trandom
quadratic equations in all the variables (i.e. we can have terms in aiaj where ai and aj are oil variables
in (A′) but not in (A)). We denote by (q′1, ..., q

′
n) these equations. We will call these r equations the

“salt” equations.
Let t be a secret affine permutation of Kn+r → Kn+r. Let (P) be the set of the equations t(q1, ...,
qn, q

′
1, ..., q

′
r). We denote by P1, ..., Pn+r these equations of (P). (P) will be the public key (i.e. we

have “mixed” Oil and Vinegar quadratic equations and truly random quadratic equations with a secret
affine permutation (P).
Let y ∈ Kn+r be the hash of a message M to be signed (or y =Hash(M ||0010||R)) where R is a random
value with no 0010 in base 2). Let x ∈ Kn+v. Then x is a valid signature of y if P (x) = y (i.e. if ∀i,
1 ≤ i ≤ n+ r, Pi(x) = yi).
When the secret affine functions s and t are known, it is feasible to compute a valid signature after
approximately O(qr) computations because we will easily compute a solution for the n equations (A)
as before, and the probability that this solution also satisfies the r equations (A′) is 1

qr (we will try
again with another random R until we succeed). When qr is small (for example if q ≤ 256 and r ≤ 2),
this is clearly feasible. (The name “salt” comes from the fact that we cannot put a lot of salt equations
since qr must stay small for efficiency.)

Cryptanalysis when v = n

Here we assume that v = n.
Let Gi and Gj be random linear sums of the n + r equations (P). The probability that Gi and Gj

are linear sums of only the n equations (A) is (1/qr)2 (because it is 1/qr for Gi and 1/qr for Gj). If
this occurs, then from Gi and Gj , we will attack the scheme exactly as described in [9]. Therefore, if
v = n, the scheme can be attacked with a complexity approximately q2r (and for the legitimate user,
computing a signature has a complexity approximately O(qr)). As a result, we do not recommend to
use this variation when v = n.

The case v > n

For well chosen parameters, we have seen that we do not know how to attack Unbalanced Oil and
Vinegar schemes. Therefore, of course, we do not know either how to attack the schemes when the
two ideas – v > n and mixing the equations with truly random equations – are combined together.
However, the idea of choosing v > n seems at the present to be a stronger idea (both for security and
for practical implementations) than the idea of mixing Oil and Vinegar with truly random equations.
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12 Another scheme: HFEV

The Unbalanced Oil and Vinegar schemes and the HFE schemes of [14] can very easily be combined,
as we will see in this section. Moreover, the combined scheme looks very efficient since (at the present)
we are able to avoid all the known attacks with more efficient choices of the parameters. So this
HFEV schemes look both more efficient (because a smaller degree d looks sufficient for security) and
more secure compared to the original HFE scheme. HFEV is also more efficient (but more complex)
compared to UOV, because very few vinegar variables are needed.

The scheme (HFEV)

In the “most simple” HFE scheme (we use the notations of [14]), we have b = f(a), where:

f(a) =
∑
i,j

βija
qθij+qφij

+
∑
i

αia
qξi + µ0, (1)

where βij , αi and µ0 are elements of the field Fqn .
Let v be an integer (v will be the number of extra xi variables, or the number of “vinegar” variables
that we will add in the scheme).
Let a′ = (a′1, ..., a

′
v) be a v-uple of variables of K. Let now each αi of (1) be an element of Fqn such that

each of the n components of αi in a basis is a secret random linear function of the vinegar variables a′1,
..., a′v.
And in (1), let now µ0 be an element of Fqn such that each one of the n components of µ0 in a basis is
a secret random quadratic function of the variables a′1, ..., a

′
v.

Then, the n+ v variables a1, ..., an, a
′
1, ..., a

′
v will be mixed in the secret affine bijection s in order to

obtain the variables x1, ..., xn+v.
And, as before, t(b1, ..., bn) = (y1, ..., yn), where t is a secret affine bijection.
Then the public key is given as the n equations yi = Pi(x1, ..., xn+v).
To compute a signature, the vinegar values a′1, ..., a

′
v will simply be chosen at random. Then, the values

µ0 and αi will be computed. Then, the monovariate equations (1) will be solved (in a) in Fqn .

Simulations

Nicolas Courtois did some simulations on HFEV and, in all his simulations, when the number of vinegar
variables is ≥ 3, there is no affine multiple equations of small degree (which is very nice).

Example: Let K = F2. In HFEV, we can, for example, choose the hidden polynomial to be:

f(a) = a17 + β16a
16 + a12 + a10 + a9 + β8a

8 + a6 + a5 + β4a
4 + a3 + β2a

2 + β1a+ β0,

where:

� a = (a1, ..., an), where a1, ..., an are the “oil” variables.

� β1, β2, β4, β8 and β16 are given by n secret linear functions on the v vinegar variables.

� β0 is given by n secret quadratic functions on the v vinegar variables.

In this example, we compute a signature as follows: the vinegar variables are chosen at random and
the resulting equation of degree 17 is solved in a.

Note: Unlike UOV, in HFEV we have terms in oil×oil (such as a17, a12, a10, etc), oil×vinegar (such
as β16a

16, β8a
8, etc) and vinegar×vinegar (in β0).
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13 The C∗V and C∗V V schemes

We can also introduce some vinegar variables in the C∗ scheme of [12]. We call C∗V the resulting
scheme. However, the “oil” and “vinegar” variables are not as well mixed in C∗V compared with
HFEV, because in C∗V we will have terms in oil×oil and vinegar×vinegar, but not in oil×vinegar. So
the C∗V scheme can seen as in figure 1.

C∗ V
? ?

?

y

t: secret affine bijection

s: secret affine bijection

x

Figure 1: The C∗V scheme

� When the number v of vinegar variables is such that qv < about 250, then the scheme can be
attacked with some of the cryptanalysis algorithms described in [18], since V can then be seen as
a small S-box in v variables. So the C∗V scheme is insecure when qv < about 250.

� However, when qv ≥ 264, we do not know how to attack the scheme. In this case, we call the
scheme the “C∗V V ” scheme (in order to show that we have many vinegar variables). The C∗V V
scheme cannot be used for encryption any more, but the scheme is still very efficient for signatures.
(These properties of C∗V V look very similar to the C∗

−− scheme described in [20].)

14 Summary of the results for UOV

The underlying field is K = Fq with q = pm. Its characteristic is p.
“As difficult as random” means that the problem of breaking the scheme is expected to be as difficult
as the problem of solving a system of equations in v variables when the coefficients are randomly chosen
(i.e. with no trapdoor).

Degree Broken Not Broken Not broken and as Broken (despite as
difficult as random difficult as random)

2 (for all p) v ≤ n or v ≃ n 2n ≤ v ≤ n2

2
n2

2 ≤ v ≤ n2 v ≥ n2

3 (for p = 2) v ≤ (1 +
√
3)n (1 +

√
3)n ≤ v ≤ n3

6
n3

6 ≤ v ≤ n3

2 v ≥ n3

6

3 (for p ̸= 2) v ≤ n or v ≃ n 2n ≤ v ≤ n3

6
n3

6 ≤ v ≤ n4 v ≥ n4

In this table, we have summarized our current results on the attacks on Unbalanced Oil and Vinegar
schemes. The original paper ([9]) was only studying the case v = n for quadratic equations.
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15 Concrete examples of parameters for UOV

In all the examples below, we do not know how to break the scheme. We have arbitrary chosen v = 2n
(or v = 3n) in all these examples (since v ≤ n and v ≥ n2 are insecure).

Example 1: K = F2, n = 128, v = 256 (or v = 384). The signature scheme is the one of section

2. The length of the public key is approximately n · ( (n+v)2

2 ) bits. This gives here a huge value:
approximately 1.1 Mbytes (or 2 Mbytes) ! The length of the secret key (the s matrix) is approximately
(n + v)2 bits, i.e. approximately 18 Kbytes. However, this secret key can always be generated from a
small secret seed of, say, 64 bits.

Example 2: K = F2, n = 64, v = 128 (or v = 192). The signature scheme is the one section 8. The
length of the public key is 144 Kbytes (or 256 Kbytes).

Example 3: K = F16, n = 16, v = 32 (or v = 48). s is a secret affine bijection of F16. The signature
scheme is the one section 8. The length of the public key is 9 Kbytes (or 16 Kbytes).

Example 4: K = F16, n = 16, v = 32 (or v = 48). s is a secret affine bijection of F16 such that all
its coefficients lie in F2. Moreover, the secret quadratic coefficients are also chosen in F2, so that the
public functions Pi, 1 ≤ i ≤ n, are n quadratic equations in (n+ v) unknowns of F16, with coefficients
in F2. In this case (the signature scheme is still the one of section 8), the length of the public key is
2.2 Kbytes (or 4 Kbytes).

Note: In all these examples, n ≥ 16 in order to avoid Gröbner bases algorithms to find a solution x
(cf [5]), and qn ≥ 264 in order to avoid exhaustive search on x.

16 Concrete example of parameters for HFEV

At the present, it seems possible to choose a small value for v (for example v = 3) and a small value
for d (for example d = 17 if K = F2).

17 State of the art (in May 1999) on Public-Key schemes with Mul-
tivariate Polynomials over a small finite field

Recently, many new ideas have been introduced to improve the schemes, such as UOV or HFEV
described in this paper. Another idea is to fix some variables to hide some algebraic properties (see
below). However, many new ideas have also been introduced to design better attacks on previous
schemes, such as the – not yet published – papers [10], [3], [1], [4]. So the field is fast moving and it can
look a bit confusing at first. Moreover, some authors use the word “cryptanalysis” for “breaking” and
some authors use this word with the meaning “an analysis about the security” that does not necessary
mean “breaking”. In this section, we describe what we know at the present about the main schemes.
In the large families of the schemes with a public key based on multivariate polynomials over a small
finite field, we can distinguish between 5 main families characterized by the way the trapdoor is intro-
duced or on the difficult problem on which the security relies.
In the first family are the schemes “with a Hidden Monomial”, i.e. the key idea is to compute an
exponentiation x 7→ xd in a finite field for secret key computation and to “hide” such a function in
the public key. In the second family are the schemes where a polynomial function (with more than
one monomial) is hidden. In the third family, the security relies on an isomorphism problem. In the
fourth family, the secret key computations are based on Gaussian computations. Finally, in the fifth
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family, the security relies on the difficulty of finding the decomposition of two multivariate quadratic
polynomials from all or part of their composition
The main schemes in these families are described in the figure below. The most interesting schemes in
each family are in a rectangle.

Family 1: C∗ (1985-1995)

Schemes with a
Hidden Monomial
(ex: Dragons with
one monomial)

C∗−−

Family 2: HFE, Dragons (with a polynomial), HM

HM−HFE−, HFE+,
HFEF

HFEV, HFEV−

Family 3: IP

Family 4: (Original) Oil and Vinegar (1997-1998)

Unbalanced Oil and Vinegar (UOV)

Family 5: 2 Round schemes (2R) (D∗∗, 2R with S-boxes)

2R−

�
�

�
�

@
@

@
@

� C∗ was the first scheme of all, and it can be seen as the ancestor of all these schemes. It was
designed in [12] and broken in [13].

� Schemes with a Hidden Monomial (such as some Dragon schemes) were studied in [15], where it
is shown that most of the simplest variations of C∗ are insecure. However, C∗−− (studied in [20])
is (at the present) the most efficient signature scheme (in time and RAM) in a smartcard. The
scheme is not broken (but it may seem too simple or too close to C∗ to have a large confidence
in its security ...).

� HFE was designed in [14]. The most recent results about its security are in [10] and [3]. In these
papers, very clever attacks are described. However, at the present, the HFE scheme is still not
broken since for well chosen and still reasonable parameters the computations required to break
it are still too large (moreover, asymptotically, the cryptanalysis is not polynomial if d increases
as d = O(n) for example). For example, the first challenge of US $500 given in the extended
version of [14] has not been claimed yet (it is a pure HFE with n = 80 and d = 96 over F2).

� HFE− is just an HFE where k of the originally public equations are not publish. Due to [10] and
[3], it may be recommended to do this (despite the fact that original HFE may be secure without
it). In the extended version of [14] a second challenge of US $500 is described on a HFE−. In an
encryption scheme, k must be small, but in a signature scheme, k may be large.

� HFEV is described in this paper. HFEV and HFEV− look very hard to break. Moreover, HFEV
is more efficient than the original HFE and it can give public key signatures of only 80 bits ! In a
signature scheme, the number v of “vinegar variables” can be large, but in an encryption scheme,
v must be small.
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� HFE+ is just an HFE scheme where the n originally public equations have been linearly mixed
with k truly random equations. In a signature scheme, k must be small, but in an encryption
scheme, k may be large.

� HFEF is just an HFE scheme where k of the variables xi have been fixed. In a signature scheme,
k must be small, but in an encryption scheme, k may be large.

� HFEVF+− is just an HFE scheme where all these “perturbations” (V, F, +, −) have been applied
on the public key.

� HM and HM− were designed in [20]. Very few analysis have been done in these schemes (but
maybe we can recommend to use HM− instead of HM ?).

� IP was designed in [14]. IP schemes have the best proofs of security so far (see [19]). IP is very
simple and can be seen as a nice generalization of Graph Isomorphism.

� Oil and Vinegar was presented in [16] and broken in [9].

� UOV is described in this paper. With IP, they are certainly the most simple schemes.

� 2R was designed in [17] and [18]. Due to [1], it is necessary to have at least 128 bits in input in the
“2R with S-boxes” scheme, and due to [4], it may be wise to not publish all the (originally) public
equations in all the 2R schemes: this gives the 2R− algorithms (the efficiency of the decomposition
algorithms given in [4] on the 2R schemes is not yet completely clear).

Remark 1: When a new scheme is found in these families, we do not necessary have to explain how
the trapdoor has been introduced. Then we have a “Secret-Public Key scheme” ! The scheme is clearly
a Public Key scheme since anybody can verify a signature from the public key (or can encrypt from
the public key) and the scheme is secret since the way to compute the secret key computations (i.e.
the way the trapdoor has been introduced) has not been revealed. For example, we could have done
this for HFEV (instead of publishing it).

Remark 2: These schemes are of theoretical interest but (at the exception of IP) their security is
not directly relied to a clearly defined and considered to be difficult problem. So is it reasonable to
implement them in real products ? We think indeed that it is a bit risky to rely all the security of
sensitive applications on such scheme. However, at the present, most of the smartcard applications
use secret key algorithms because RSA smartcards are more expensive. So it can be reasonable to
put in a low-cost smartcard one of the previous public key schemes in addition to (not instead of) the
existing secret key schemes (such as Triple-DES). Then the security can only be increased, the price of
the smartcard would still be low (no coprocessor needed). The security would then rely on a master
secret key for the secret key algorithm (with the risk of depending on a master secret key) and on a
new low-cost public-key scheme (with the risk that the scheme has no proof of security).

18 Conclusion

In this paper, we have presented two new public key schemes: UOV and HFEV. The study of such
schemes has led us to analyze very general properties about the solutions of systems of general quadratic
forms. Moreover, from the general view presented in section 15, we see that these two schemes are at
the present among the most interesting schemes in two of the five main families of schemes based on
multivariate polynomials over a small finite field. Will this still be true in a few years ?
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