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t. Obfus
ation is a method 
onsisting in hiding information ofsome parts of a 
omputer program. A

ording to the Ker
kho�s prin
i-ple, a 
ryptographi
al algorithm should be kept publi
 while the wholese
urity should rely on the se
re
y of the key. In some 
ontexts, sour
e
odes are publi
ly available, while the key should be kept se
ret; this isthe 
hallenge of 
ode obfus
ation. This paper deals with the 
ryptanal-ysis of su
h methods of obfus
ation applied to the DES. Su
h methods,
alled the �naked-DES� and �nonstandard-DES�, were proposed by Chowet al. [5℄ in 2002. Some methods for the 
ryptanalysis of the �naked-DES�were proposed by Chow et al. [5℄, Ja
ob et al. [6℄, and Link and Neu-man [7℄. In their paper, Link and Neuman [7℄ proposed another methodfor the obfus
ation of the DES.In this paper, we propose a general method that applies to all s
hemes.Moreover, we provide a theoreti
al analysis. We implemented our methodwith a C 
ode and applied it su

essfully to thousands of obfus
atedimplementations of DES (both �naked� and �non-standard� DES). In ea
h
ase, we re
overed enough information to be able to invert the fun
tion.Keywords: Obfus
ation, 
ryptanalysis, DES, symmetri
 
ryptography,blo
k 
ipher.1 Introdu
tionIn re
ent years, the possibility of obfus
ating programs has been investigated.From a theoreti
al point of view, Barak et al. [1℄ have proven impossibilityresults for the task of obfus
ating 
omputer programs. In parti
ular, it turnsout that there exists a family of programs su
h that: on the one hand ea
hprogram is non learnable (i.e. its exe
ution does not give any information aboutits original sour
e 
ode), but on the other hand every obfus
ator (i.e. the programprodu
ing an obfus
ation) fails 
ompletely when given any program of this familyas input. However it has not been proved that spe
i�
 instan
es, parti
ularly
ryptographi
 primitives, are impossible to obfus
ate.
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In 2002, Chow et al. [4,5℄ suggested two di�erent obfus
ations, one for theAES, the other for the DES. The AES obfus
ation was 
ryptanalysed by Billetet al. [2,3℄ in 2004. Chow et al. [5℄ also mounted an atta
k on their �rst DESobfus
ation version (
alled �naked-DES�). Ja
ob et al. [6℄ and Link and Neuman[7℄, proposed two other atta
ks on the �naked-DES�. Here, breaking the �naked-DES� means re
overing the se
ret key.A se
ond version of DES obfus
ation, 
alled �nonstandard-DES�, was givenby Chow et al. [5℄. This �nonstandard-DES� is obtained by obfus
ating the usualDES 
omposed with initial and �nal se
ret permutations. In this 
ontext, break-ing su
h a �nonstandard-DES� implementation means re
overing the se
ret keyand the se
ret initial and �nal permutations.Moreover, many industrial a
tors have developed obfus
ated implementationsof 
ryptographi
 algorithms, in parti
ular for DRM, Pay-TV, and intelle
tualproperty prote
tion. (e.g. 
loakware [12℄, retroguard [13℄, Yguard [14℄).This paper is stru
tured as follows : In Se
tion 2, we give an overview of theobfus
ation methods given by Chow et al. and by Link and Neumann. Se
tion 3is devoted to our atta
k on the �naked-DES�. In Se
tion 4, we adapt our atta
kto the �non standard� DES. Se
tion 5 is devoted to our implementation of thisatta
k. In Se
tion 6, we 
ompare our atta
k to the one of Wyseur et al. [11℄.Finally, we 
on
lude in Se
tion 7. All proofs are available in the appendi
es.2 DES Obfus
ation MethodsChow et al. [5℄ proposed two types of DES obfus
ation. The �rst one, 
alled�naked-DES�, produ
es an usual DES. The se
ond one, 
alled the �nonstandard-DES�, is a slight modi�
ation of the standard DES algorithm. This last versionis the one they re
ommend.Let us des
ribe the �naked-DES� (see Figure 7). The standard DES is imple-mented by means of many fun
tions. The �rst one is an a�ne fun
tion M1, whi
his the 
omposition of the initial permutation, the expansion (slightly modi�ed inorder to dupli
ate all the 32 right bits), and a bit-permutation φ0 : IF96
2 → IF96

2 .The role of φ0 is to send 48 bits to the 
orresponding S-box entries, the 48 re-maining bits being sent randomly to the T-box entries (see Figure 8). Eight ofthese T-boxes are derived from the eight S-boxes of the DES (see Figure 1), andthe four remaining T-boxes are identities (or more generally bit permutations,see Figure 8 (T12)). An a�ne fun
tion M2,1 follows the T-boxes. This a�ne fun
-tion is the 
omposition of the P and Xor operation of the standard DES, and abit-permutation φ1 (see Figure 7). Ea
h of the 16 rounds is the 
omposition ofthe T-boxes and an a�ne fun
tion M2,i. The last round is followed by an a�nefun
tion M3 whi
h is the 
omposition of a sele
tion fun
tion, and the �nal per-mutation. This fun
tion takes for arguments the outputs of the a�ne fun
tion
M2,16 of the last round and returns the 
iphertext (see Figure 7).We will denote by Ai, one of these 
omponents (Ti, M1, M2,i or M3). Theobfus
ator program 
omputes numbers of random nonlinear permutations on



Fig. 1. T-Box
IFs

2, bk,l (s = 4 or 8). These permutations are referred by Chow et al. [5℄ asio-blo
k en
oding bije
tions. Twenty-four or twelve of these io-blo
k en
odingbije
tions are 
on
atenated in order to obtain nonlinear permutations on IF96
2 ,

Pi,j . Ea
h 
omponent Ai is obfus
ated between permutations Pi,1 and Pi,2. Theresulting fun
tions Pi,1 ◦ Ai ◦ Pi,2 are stored in arrays in order to be used bythe obfus
ated program. When 
onsidering 
onse
utive 
omponents, the �nalpermutation of the �rst 
omponent, and the initial permutation of the se
ond
omponent, 
an
elled out (see Figure 7) i.e. :
(Pi,1 ◦ Ai ◦ Pi,2) ◦ (Pj,1 ◦ Aj ◦ Pj,2) = Pi,1 ◦ (Ai ◦ Aj) ◦ Pj,2 .This �naked-DES� was 
ryptanalysed by the authors themselves [5℄.In order to repair the s
heme, they proposed the �nonstandard-DES�. It 
on-sists in adding two a�ne bije
tions M0 and M4 before and after the �naked-DES�,respe
tively (see Figure 7). It is not spe
i�ed by Chow et al. [5℄ whether M0 and

M4 are blo
k en
oded (i.e. respe
tively pre
eded and followed by nonlinear ran-dom permutations). In this paper, we 
onsider that M0 and M4 are not blo
ken
oded.Further improvement on the atta
k of the �naked-DES� were given by Linkand Neumann [7℄. They suggested another solution whi
h 
onsists in merging theT-boxes and the a�ne fun
tion M2,i of ea
h round. This way, we do not havea

ess to the T-boxes outputs. Moreover, the M2,i fun
tions of the di�erentrounds are blo
k en
oded in another way.In this paper, we des
ribe an atta
k that defeats both �nonstandard-DES�and the Link and Neumann's s
hemes.3 Atta
k on the �Naked-DES�As mentioned before, the �naked-DES� proposed by Chow et al. [5℄ was already
ryptanalysed in the papers [5,6,7℄. In this se
tion, we show how to 
ryptanalysethe improved version of the �naked-DES� proposed by Link and Neumann [7℄.Note that our method also works for the �naked-DES� proposed by Chow et al.[5℄. In what follows, we will denote by �regular DES�, the one des
ribed in thestandard [10℄ (without PC1), and we will use the same notations.



Our atta
k is divided into two phases and is based on a trun
ated di�erentialatta
k. Roughly speaking, the �rst phase 
onsists in generating pairs of messages(X ,X ′) su
h that the right part of the images, through IP and the �rst round ofa regular DES, are equal (for a given key K) (see Figure 2.b). The se
ond phase
onsists in evaluating those pairs of messages (X, X ′) on the �naked-DES� andin 
he
king a 
ondition that we spe
ify below. The pairs that satisfy the testprovide a key 
andidate.

Fig. 2. One round of DES, and atta
k prin
ipleLet us go into the details. Remember that f(., K) denotes the fun
tion of theregular DES, we will also denote it by fK(.) (see Figure 2.a). Let X be an initialmessage, (L0, R0) denotes its image through IP , and (L1, R1) is the image of
(L0, R0) through the �rst round, i.e. (L1, R1) = (R0, L0 ⊕ f(R0, K)). Considera fun
tion f , ve
tors X and ∆, the derivative f(X)⊕ f(X ⊕∆) will be denotedby D∆f(X). Let us �rst motivate our algorithm. Let K be a �xed unknown key.Assume we want to �nd the �rst round 6-bit subkey 
orresponding to Si (for thesake of 
larity, we will restrain ourselves to i = 1). We generate 
andidate keyssu
h that only the 6 key bits of S1 of the �rst round are modi�ed. For ea
h ofthese keys, we 
ompute pairs of messages (X ,X ′) su
h that,1. ∆ = R0 ⊕ R′

0 is zero, ex
ept for the se
ond and third bits.2. L′
0 = L0 ⊕ D∆fK(R0)Observe that the se
ond and third bits of R0 only a�e
t the output of S1(see Figure 2.a) . Therefore, f(R0, K) and f(R′

0, K) are identi
al ex
ept for thefour bits 
orresponding to the output of S1.Under these 
onditions, in the next round we have R1 = R′
1 and L′

1(= R′
0)is identi
al to L1(= R0) ex
ept for at most two bits. Consider now these twomessages X and X ′ applied to the �naked-DES� with the 
orre
t key 
andidate.We observe that these bits (non-zero bits of L′

1 ⊕ L1) in�uen
e at most twoio-blo
k en
oding bije
tions bi,3 and bj,3 (see Figure 8). If the key 
andidate iswrong, we will have R1 6= R′
1. Therefore many bits will 
hange at the outputof M2,1, and we will be able to distinguish this situation from the 
orre
t keyguess.



Here is an overview of the atta
k:� Randomly 
hoose a message X .� Compute (L0, R0) = IP (X) with IP publi
.� Choose ∆ su
h that only the se
ond and third bits are di�erent from 0.� For any possible 
andidate value of 6-bit subkey:
• Compute L′

0 = L0 ⊕ D∆fK(R0).
• Compute X ′ = IP−1(L′

0, R0 ⊕ ∆).
• Apply X and X ′ to the obfus
ated DES and save the values Y and Y ′at the end of the �rst round.
• Compare Y and Y ′ and 
ompute in how many io-blo
k en
oding bije
-tions they di�er.
• Reje
t the 
andidate if this number is stri
tly greater than 2. Otherwise,the 
andidate is probably 
orre
t.This way, we 
an re
over the 48 key bits of the �rst round of the DES. The 8remaining bits are found by exhaustive sear
h.Remark 1. This algorithm 
an produ
e more than one 
andidate for the 6-bitsubkey. It will provide wrong 6-bit subkeys in two situations.1. Due to the balan
e property of the S-boxes and the fa
t they map six bitsto four bits, four di�erent inputs produ
e the same output. Therefore forea
h S-box, three wrong 6-bit subkeys will produ
e the same output as the
orre
t key. To avoid this problem, we 
an laun
h this algorithm with anotherrandom initial message, or simply another ∆. In fa
t, we only have to 
hangethe values of the bits of R0 and ∆ 
orresponding to the input of S1 (the bits32,1,. . . ,5). A
tually, we 
an 
hoose di�erent pairs (X, X ′) su
h that theinterse
tion of the key 
andidates asso
iated to ea
h of them is the 
orre
tkey.2. The se
ond one is due to a propagation phenomena. Suppose we have awrong 6-bit subkey produ
ing a wrong S1 output. It means that there aremore than three bits of di�eren
e between (L1, R1) and (L′

1, R
′
1). Thesedi�eren
es 
ould be mapped to the same io-blo
k en
oding bije
tion, leadingto the �ipping of only two io-blo
k en
oding bije
tions at the output of M2,1.In this 
ase, we laun
h this algorithm with several values for R0. It leads toseveral lists of key 
andidates and the 
orre
t key belongs to the interse
tion.This way, wrong keys will be dis
arded.4 Atta
k on the �Nonstandard-DES�This se
tion is dedi
ated to an atta
k on the �nonstandard-DES�. Remind thatthe �nonstandard-DES� is a �naked-DES� where the a�ne fun
tions M1 and M0are repla
ed by M1◦M0 and M4◦M3 respe
tively (where M0 and M4 are mixingbije
tions, see Chow et al. [5℄). As mentioned before, we assume that the inputsof M1 ◦M0 (respe
tively the outputs of M4 ◦M3) are not io-blo
k en
oded. Note



that all the other fun
tions are io-blo
k en
oded using bije
tions on IF4
2 (thesame prin
iple applies for the obfus
ation proposed by Link and Neuman [7℄where the bije
tions are de�ned on IF8

2). Moreover, we assume that the T-Boxesfollow the same ordering in the di�erent rounds. In what follows, we will not
onsider IP (inside M1) w.l.o.g, for the sake of 
larity.In what follows, the term preimage will impli
itly refer to the preimage withrespe
t to the linear bije
tion M0. Moreover, we say that a bit of a ve
tor istou
hing an io-blo
k en
oding bije
tion if this bije
tion depends on this bit.Similarly, we will say that a ve
tor tou
hes an S-Box if non-zero bits tou
h it.Our atta
k on the �nonstandard-DES� is based on the one on the �naked-DES�. Our approa
h is based on a trun
ated di�erential atta
k. It 
onsists in
omputing the images of a random ve
tor X0 at di�erent levels in the obfus
atedDES. We 
ompare these values (
alled initial-entries) to the 
orresponding im-ages of X0 ⊕ ∆, where ∆ satis�es some 
onditions depending on the 
ontext.This approa
h allows providing information about the key and the matrix M−1
0 ,gradually. The full key and the matrix M−1

0 will be known at the end of thepro
ess. The way we store information about M−1
0 
onsists in 
onsidering listsof 
andidates for preimages of unspe
i�ed 
anoni
al ve
tors. Lists of 
andidates
ontaining only one ve
tor are 
alled distinguished lists. This ve
tor is then a 
ol-umn of M−1

0 . Note that these lists are a
tually ve
tor spa
es and 
an be sharedby several 
anoni
al ve
tors. In pra
ti
e, a list E will be shared by dimE 
anon-i
al ve
tors (that are not ne
essary spe
i�ed). Our algorithm works sequentiallyand 
onsists in spe
ifying these 
anoni
al ve
tors and shortening the lists. Ourmethod 
an therefore be understood as a ��ltering pro
ess�. The di�erent �ltersare des
ribed below.Se
tion 4.1 des
ribes a preliminary step almost independent of the stru
tureof the blo
k 
ipher. It 
onsists in �nding ve
tor spa
es asso
iated to a parti
ulario-blo
k en
oding bije
tion at the input of the �rst round. This step allowsgetting global information about M−1
0 .Se
tion 4.2 des
ribes a set of �lters intending to re�ne information about

M−1
0 . These steps are highly related to the studied blo
k 
ipher. The �rst �lter,des
ribed in Se
tion 4.2, allows distinguishing lists that are asso
iated to 
anon-i
al ve
tors belonging either to right bits or left bits of the input of the �rstround (L0 or R0). The se
ond �lter, des
ribed in Se
tion 4.2, extra
ts all thelists (marked as �right� in the previous �lter) tou
hing a single S-box (we will seethat these lists play an important role). The third �lter, des
ribed in Se
tion 4.2,gathers the lists (marked as �left� in the previous �lter) in sets asso
iated to theoutput of S-boxes. Se
tion 4.2 links T-Boxes (obfus
ation of the keyed S-boxes)to S-Boxes. This information allows the last �lter, presented in Se
tion 4.2, topre
isely spe
ify the 1-to-1 link between the lists (marked as �left�) and the (left)
anoni
al ve
tors.Se
tion 4.3 explains how to extra
t the key and how to re
over the full in-vertible matri
es M−1

0 and M4.



4.1 Blo
k Level Analysis of M1 ◦ M0Re
overing of the Bk's. Denote by Kk the spa
e ({0}4k−4 × IF4
2 ×{0}96−4k),and by Kk, the spa
e (IF4k−4

2 × {0}4 × IF96−4k
2 ). In what follows, the ve
torspa
e spanned by a set of ve
tors S will be denoted 〈S〉. Also, ei denotes theith 
anoni
al ve
tor (the position of the �one� is 
omputed from the left andstart from one) of the ve
tor spa
e IF64

2 . The sets {ei ∈ IF64
2 | i = 1 . . . 32} and

{ei ∈ IF64
2 | i = 33 . . . 64} will be denoted by SL and SR, respe
tively.Ideally, we are looking for 24 ve
tor spa
es su
h that their ve
tors in�uen
eonly one io-blo
k en
oding bije
tion at the output of M1 ◦ M0. This wouldallow modifying only the input of one parti
ular io-blo
k en
oding bije
tion.Unfortunately, due to the dupli
ation of the bits in M1 (be
ause of the expansion

E) this goal is impossible to rea
h. We will therefore try to approximate thissituation and deal with the drawba
ks afterwards. First we will have to givesome notations, de�nitions and properties.Denote by F : IF64
2 → IF96

2 the obfus
ation of M1 ◦ M0 (see Figure 7).Let X be a ve
tor in IF96
2 . Denote by πk the proje
tion πk : (IF4

2)
24 → IF4

2 :
X = (x1, . . . , x24) 7→ xk. Let bk be the kth io-blo
k en
oding bije
tion at theoutput of M1 ◦ M0. The fun
tion F is written as
F (X) = (b1 ◦π1 ◦M1 ◦M0(X), b2 ◦π2 ◦M1 ◦M0(X), . . . , b24 ◦π24 ◦M1 ◦M0(X)) .De�nition 1. Let k be an integer, k ∈ [1, 24]. We denote by Bk the ve
tor spa
e
{X ∈ IF64

2 | πk ◦ M1(X) = 0}. In other words, it is the subspa
e of ve
tor Xsu
h that for any non-zero 
omponent ei of X, M1(ei) does not tou
h bk, i.e.
Bk = 〈ej | πk ◦ M1(ej) = 0〉.De�nition 2. Let k be an integer, k ∈ [1, 24]. We denote by Ek the subspa
e ofve
tor X su
h that for any non-zero 
omponent ei of X, M1(ei) tou
hes bk, i.e.
Ek = 〈ej | πk ◦ M1(ej) 6= 0〉.

Fig. 3. ExampleRemark 2. Note that IF64
2 is the dire
t sum of Bk and Ek for any k, i.e. IF64

2 =
Bk

⊕
Ek.



We will denote by Bk the subspa
e M−1
0 (Bk), and by Ek the subspa
e

M−1
0 (Ek).Proposition 1. For any k integer, k ∈ [1, 24], Bk = {∆ ∈ IF64

2 | D∆F (IF64
2 ) ⊂

Kk}, the probability that ∆ belongs to Bk, when ∆ is randomly 
hosen, is greateror equal to 1
24 = 1

16 , and 60 ≤ dim(Bk) < 64.Combining De�nition 2 and Property 1, the ve
tor spa
e Ek 
an be des
ribed asthe set of ve
tors ∆ su
h that for any ve
tor X0 ∈ IF64
2 , M0(X0) ⊕M0(X0 ⊕∆)has in total at most four non-zero 
omponents ei, all of them tou
hing the kthio-blo
k en
oding bije
tion through M1. Due to Property 1, it is easier to re
overa basis for Bk's, than for Ek's. That is why we will �rst re
over all the Bk's.Using Property 1, we only have to 
ompute D∆F (X0) for random ∆ ∈ IF64

2 anddetermine to whi
h spa
e Kk it belongs. Using Bk's, we will re
over Ek's, or atleast, 24 ve
tor spa
es Êk 
ontaining Ek with minimal dimension.Re
overing of the Êk's. Let us now explain how to re
over Êk. First, let usremark that for any X ∈ IF64
2 and for any ∆ ∈ IF64

2 , we have D∆F (X) ∈ Kk ifand only if D∆πk ◦ M1 ◦ M0(X) ∈ Kk. Let us introdu
e the following lemma.Lemma 1. Let k be an integer belonging to [1, 24]. If Ej ∩ Ek = {0} for anyinteger j distin
t from k belonging to [1, 24], then
Ek =

⋂

j 6=k

Bj .Sin
e M0 is a bije
tion, this lemma means that if Ej ∩ Ek = {0} for any integer
j ∈ [1, 24] di�erent from k, then Ek =

⋂
j 6=k

Bj . Nevertheless, due to the bit-dupli
ation, there exist indi
es k and j su
h that Ej ∩ Ek 6= {0} (and then
Ej ∩ Ek 6= {0}). Denote by Jk the set {j | Ej ∩ Ek = {0}}, by Êk the subspa
e⋂
j∈Jk

Bj , and by Êk the subspa
e ⋂
j∈Jk

Bj where k is an integer belonging to [1, 24].Proposition 2. For any integer k ∈ [1, 24], Ek ⊆ Êk.Let us introdu
e a property that will allow us to give another 
hara
terizationof Jk.Proposition 3. For any integer i ∈ [1, 24] and for any integer j ∈ [1, 24]

dim(Ei ∩ Ej) = 64 + dim(Bi ∩ Bj) − dim(Bj) − dim(Bi) .A straightforward appli
ation of this property to the de�nition of Jk leadsto Jk = {j ∈ [1, 24] | 64 = dim(Bj) + dim(Bk)− dim(Bk ∩Bj)}. This 
hara
ter-ization will be useful in order to 
ompute Êk. If dim(Êk) + dim(Bk) > 64 then
Ek ( Êk, and we have found a ve
tor spa
e 
ontaining stri
tly the one we sear
h.Note that when dim(Êk) + dim(Bk) = 64, Ek = Êk. This 
ase is parti
ularlyinteresting be
ause it redu
es the 
omplexity of the full 
ryptanalysis.



4.2 Bit Level Analysis of M
−1

0In the previous se
tion, we were looking for di�eren
es ∆ asso
iated to a spe
i�
io-blo
k en
oding bije
tion. It allowed us to get some information about M−1
0 . Inthis se
tion, we re�ne our sear
h and this will allow us to get enough informationabout M−1

0 in order to apply our method on the �naked-DES� to �nonstandard-DES�. Our algorithm works sequentially and 
onsists in a ��ltering pro
ess�. Thedi�erent �lters are des
ribed below.Sear
h for Candidates for Preimages of Elements Belonging to theSets SL and SR. Consider ∆ be an element of IF64
2 su
h that M0(∆) = eiand ei ∈ SL. The only non-zero bit of M1 ◦ M0(∆) tou
hes only one io-blo
ken
oding bije
tion (re
all that we do not 
onsider IP ). Therefore, ∆ belongs toa single Êk. Assume now that ∆ ∈ IF64

2 su
h that M0(∆) = ei and ei ∈ SRthen M1 ◦ M0(∆) has exa
tly two non-zero bits that may tou
h the same ortwo distin
t io-blo
k en
oding bije
tions or equivalently ∆ belongs to one or twospa
es Êk. In what follows, we will 
all double an element ∆ ∈ IF64
2 su
h that

M0(∆) ∈ SR and the two non-zero bits of M1 ◦ M0(∆) tou
h the same io-blo
ken
oding bije
tion. For example, on Figure 8, the bit R2 
ould be a double, sin
eits two instan
es are in the input of T1. By 
onsidering interse
tions between thespa
es Êk, taken pairwise, we 
an distinguish preimages of elements of SR fromdoubles or preimages of elements of SL.Note that the interse
tions between spa
es Êk taken pairwise provide moreinformation. Indeed, Êi ∩ Êj 
ontains preimages of unknown 
anoni
al ve
tors.In parti
ular, if dim(Êi ∩ Êj) = 1 then Êi ∩ Êj = 〈M−1
0 (ek)〉 for some k. Inthis 
ase, we already know the preimage of an unknown 
anoni
al ve
tor. When

dim(Êi ∩ Êj) > 1 we 
an still take advantage of this fa
t even if it requires someextra sear
hes.Re
overing Middle Bits. In order to apply our atta
k presented in Se
tion3, we need to exa
tly know the preimage of 
anoni
al ve
tors tou
hing only asingle S-Box of the �rst round (e.g. Right bits 2,3,6,7,10, . . . ). In what follows,we will refer to su
h a 
anoni
al ve
tor as a middle bit. If a middle bit is not adouble, then its two 
opies tou
h two di�erent io-blo
k en
oding bije
tions. The�rst 
opy is in input of an S-box, leading to at least two bits of di�eren
e atthe end of the �rst round of a regular DES, and 4 bits in our 
ase, due to theexpansion. The se
ond 
opy is a by-passed bit (see Figure 1), leading to only onebit of di�eren
e at the end of the �rst round. Consider the bold path in Figure 8starting from R3 bit, in order to have a global view. Let us explain how we usethis property.Re
all that X0 is the initial-ve
tor de�ned in Se
tion 4. For ea
h di�eren
e
∆ belonging to the lists marked as input of the studied T-box, we apply X0 ⊕∆to the obfus
ated DES by making an inje
tion fault. This means that we set theinput of this T-box to the initial-entry while we keep the input of the other T-Boxes (see Figure 4). We evaluate the number of io-blo
k en
oding bije
tions at



the output of the �rst round that di�ers from the 
orresponding initial-entries.If only one io-blo
k en
oding bije
tion (at the output of the �rst round) di�ersfrom the 
orresponding initial-entry, we dedu
e that ∆ 
ould be the preimage ofa middle bit. Therefore, a list 
ontaining preimages of several 
anoni
al ve
tors
an be divided into two shorter lists; one list 
ontaining preimages of middle bitswhile the other 
ontains preimages of non-middle bits.
Fig. 4. Inje
tion faultRemark 3. If a T-box is tou
hed by more than three middle bits or left bits, wededu
e that this T-box does not 
ontain any S-box. Note also that doubles 
anonly be preimages of middle bits. Finally, a T-box tou
hed by a double 
ontainsne
essarily an S-box.Re
overing Left Bits. In order to apply our atta
k presented in Se
tion3, we need to know whi
h group of four 
anoni
al ve
tors are xored with theoutput of ea
h S-box of the �rst round. First, we determine the io-blo
k en-
oding bije
tions that are tou
hed by the outputs of the studied S-box andwe denote by BS this set of bije
tions. In Figure 8, we 
an see that BS =

{b1,3, b3,3, b8,3, b12,3, b15,3, b20,3, b24,3} for the S-box S1. The elements bi,3 of BSare 
hara
terised by D∆m
bi,3◦πi◦M2,1◦T ◦M1◦M0(X0) 6= 0, for all∆m belongingto a list marked as a middle bit of the studied S-box. Then, we store in an extralist L ea
h ∆ marked as left bits tou
hing exa
tly two bije
tions of BS. This list
ontains all the preimages asso
iated to 
anoni
al ve
tors that are potentiallyxored with the output of the S-box. Finally, we �nd ∆l ∈ 〈L〉 su
h that for anybije
tion bi,3 ∈ BS we have D∆m⊕∆l

bi,3 ◦πi ◦M2,1 ◦T ◦M1 ◦M0(X0) = 0, where
∆m belongs to a list marked as a middle bit of the studied S-box. This pro
essis repeated with di�erent ∆m or X0, until we �nd four linearly independent
∆l or equivalently the ve
tor spa
e spanned by the preimages of the sear
hed
anoni
al ve
tors. We then 
ompute the interse
tion between this spa
e and allthe lists. It allows us to split some of them in shorter lists (the interse
tion andthe 
omplementary spa
e of the interse
tion). It may lead to lists 
ontaining asingle ve
tor (distinguished list).



Chaining. In this se
tion, we will try to determine pre
isely the 
orresponden
ebetween T-boxes and S-boxes. Due to the remark in Se
tion 4.2, we know whi
hare the T-boxes 
ontaining an S-box. The probability that a sele
ted T-box,denoted by T1, 
ontains S1 is 1/8. We determine the two T-Boxes that aretou
hed by a 
anoni
al ve
tor asso
iated to a list marked as �right bit�, �non-middle bit� and asso
iated to T1. Sele
ting one of these T-Boxes randomly, theprobability that it 
ontains S2 is 1/2. Out of the set of unsele
ted T-Boxes, wesele
t the one that is tou
hed by a 
anoni
al ve
tor asso
iated to a list marked as�right bit�, �non-middle bit� and asso
iated to the previous sele
ted T-Box. We
ontinue the pro
ess until all T-Boxes have been sele
ted (see Figure 5). Notethat the probability to determine the right 
orresponden
e is 1/8× 1/2 = 1/16.
Fig. 5. ChainingBit Positions. At this stage, we have re
overed between others, 32 preimages
orresponding to unspe
i�ed left 
anoni
al ve
tors. In order to determine the
orresponden
e, we use the following observation on the DES:Out of the four left bits that are xored with the output of a spe
i�ed S-Box,exa
tly two be
ome (in the se
ond round) middle bits.Now, we just have to apply ea
h of the preimages to the obfus
ated DES and
he
k whether the image of this ve
tor in front of the se
ond round is a middlebit (
f. 4.2). Assuming that the T-Boxes follow the same ordering in the di�erentrounds, preimages 
orresponding to a middle bit (resp. non-middle bit) 
an bedistinguished by observing the indi
es of the tou
hed T-Boxes.For example, for the �rst S-box, among the preimages of the four identi�ed left
anoni
al ve
tors,� one of su
h ve
tors is the preimage of e23 (resp. e31) if it is the preimage ofa middle bit of S6 (resp. S8) in the se
ond round.� one of su
h ve
tors is the preimage of e9 (resp. e17) if it is not the preimageof a middle bit and it is in the input of S2 and S3 (resp. S4 and S5) of these
ond round.4.3 The Atta
kIn Se
tion 4.2, we have shown how to re
over all the preimages of the left 
anon-i
al ve
tors. In other words, we have re
overed half of M−1

0 (
olumns and their



positions). Also, some of the lists marked as middle bits 
ontain only one ve
torbut their 
orresponding 
anoni
al ve
tor is however unknown. Therefore, some
olumns of M−1
0 are known up to their positions. Finally, the remaining listsmarked as middle bits 
ontain preimages of some 
anoni
al ve
tors ei1 , . . . , ein(their number is the dimension of the ve
tor spa
e spanned by the list). In this
ase, we sele
t linearly independent ve
tors in the list and we asso
iate ea
hof them to one of the 
anoni
al ve
tor eij

. Therefore, we are in the 
ontext ofthe atta
k of the �naked-DES� up to some adaptations. In parti
ular, we have to
hoose X0 belonging to the ve
tor spa
e spanned by the known 
olumns of M−1
0 .The evaluation of the �rst round on X0⊕∆ may lead to some di�
ulties. Indeed,we have to 
hoose ∆ belonging to the preimage of middle bits spa
e whi
h isnot ne
essarily in
luded in the ve
tor spa
e spanned by the known 
olumns of

M−1
0 . It turns out that we have to try all the 
andidates for this part of thematrix M−1

0 . For ea
h of these 
andidates, we mount an atta
k like we did onthe �naked-DES�, whi
h provides 48-bit key 
andidates. Note that wrong keysmay be re
overed. More importantly, here may be no key for this 
andidate forthis part of the matrix M−1
0 . In other words, it means that we have to dis
ardthis 
andidate.In order to determine the remaining part of M−1

0 (
olumns asso
iated tonon-middle bits), we apply a similar prin
iple that we used for the �naked-DES�.Indeed, we know the key and we know that for the �naked-DES� for any initial-message X0 there always exists a di�eren
e ∆ with non-zero right 
omponentsu
h that the right part of the di�erential (evaluated in X0) of the �rst round iszero. It means that in the 
ontext of the �nonstandard-DES�, wrong 
andidatesfor M−1
0 
an be dis
arded. Denote by K the spa
e spanned by the known 
olumnsof the 
andidate for M−1

0 and by U the unknown 
olumns of the 
andidate for
M−1

0 . We have K ⊕ U = IF64
2 . The 
andidate for M−1

0 
an be dis
arded if thereexists X0 ∈ K su
h that there does not exist ∆ with a non zero-
omponent in
U su
h that the right part of the di�erential (evaluated in X0) is zero.At this stage, we have a 48-bit key 
andidate and a 
andidate for M−1

0 . Wemake an exhaustive sear
h in order to determine the 8 remaining bits of the key.For ea
h of them we try to solve a linear system in order to �nd the matrix M4.If there is no solution for M4 we dedu
e that the 8-bit key 
andidate is wrong.If all the 8-bit key 
andidates are wrong, we dis
ard this parti
ular M−1
0 . Notethat this method also works if M4 has io-blo
k en
oding bije
tions at its output.Atta
k on Link and Neumann obfus
ation: Our methods only use the outputsof the �rst and se
ond round. In parti
ular, we never use the outputs of the T-boxes. Therefore, our two atta
ks (�naked-DES�, and �nonstandard-DES�) 
an beapplied on the Link and Neumann [7℄ obfus
ation method. The only di�eren
eis that we will deal with larger lists.



5 ResultsThis atta
k was implemented with a C 
ode. At ea
h stage of the atta
k, thenumber of 
andidates de
reases both for the key and for M−1
0 . Finally, it willlead to a unique 48-bit key 
andidate, a unique M−1

0 
andidate, and a unique
M4 
andidate. We have tested our atta
k on thousands of randomly generatedobfus
ated implementations of DES (both �naked� and �nonstandard� DES).Figure 6 shows the ne
essary time to 
omplete the atta
k. We 
an observe that95% of the atta
ks require less than 50 se
onds, and 75% less than 17 se
onds.The mean time is about 17 se
onds. However, the atta
ks were exe
uted on astandard PC. The 
ode was not optimized and the performan
e 
an be furtherimproved.
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Fig. 6. Repartition of the atta
ks durations6 Comparison to Wyseur et al.'s WorkIn this se
tion, we try to 
larify the di�eren
es between our paper and the one ofWyseur et al. [11℄. The main advantage of their method is that they are able tore
over the key for the �nonstandard-DES� even when the transformations M0and M4 are nonlinear. Nevertheless, they do not re
over these transformations,and the only knowledge of the key is useless. They 
laim that the problem isstraightforward in the linear 
ase provided the key is known. As far as we knowand without any additional tri
ks, this issue requires the use of algorithms thatallow �nding the linear bije
tions A and B satisfying the equation G = A◦F ◦B,given the nonlinear fun
tions F and G. These algorithms are exponential in thenumber of variables of F (see Patarin et al. [9℄). Our method re
overs thesetransformations in a short amount of time, when they are linear. The nonlinear
ase is still an open problem. Finally, Wyseur et al. [11℄ 
onsider an obfus
ationwhere the φi's have a restri
ted shape. While our model is unrestri
ted, they
onsider only φi's where all middle-bits tou
h only the four trivial T-boxes. It isnot obvious whether their methodology 
an be adapted to the general 
ase.



7 Con
lusionIn this paper, we have given new te
hniques of 
ryptanalysis for the 
urrentobfus
ation methods of DES. These te
hniques rely on a theoreti
al analysisand have also been implemented as a C program. We have implemented ourmethod with a C 
ode and have applied it su

essfully to more than a thousandobfus
ated implementations of DES (both �naked� and �nonstandard� DES). Allthe studied instan
es have lead to a unique 
andidate for the DES key and for the
M0 and M4 se
ret linear transformations. The key and the two linear transformshave been obtained within 17 se
onds in average.Referen
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Appendix A: ProofsProof of Property 1: Let E be the set {∆ ∈ IF64
2 | D∆F (IF64

2 ) ⊂ Kk}.� Let ∆ be an element belonging to Bk. Let X be an element belonging to
IF64

2 .
D∆F (X) = (D∆(b1 ◦ π1 ◦ M1 ◦ M0(X)), . . . , D∆(b24 ◦ π24 ◦ M1 ◦ M0(X)))A

ording to the de�nitions, if ∆ ∈ Bk then M0(∆) ∈ Bk or equivalently

πk ◦ M1 ◦ M0(∆) = 0. Writting D∆(bk ◦ πk ◦ M1 ◦ M0(X)) as (1), we have :
(1) = bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X ⊕ ∆)

= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ πk ◦ M1 ◦ M0(∆))
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk(πk ◦ M1 ◦ M0(X) ⊕ 0)
= bk ◦ πk ◦ M1 ◦ M0(X) ⊕ bk ◦ πk ◦ M1 ◦ M0(X) = 0This means that D∆F (X) belongs to Kk or equivalently ∆ belongs to E.We 
on
lude that Bk ⊂ E.� Let ∆ be any element of E. A

ording to the de�nition of E, we have inparti
ular D∆(0) ∈ Kk. This means that

bk(0) ⊕ bk ◦ πk ◦ M1 ◦ M0(∆) = 0 ,or equivalently
bk(0) = bk ◦ πk ◦ M1 ◦ M0(∆) .We dedu
e that πk ◦M1 ◦M0(∆) = 0 be
ause bk is a bije
tion. A

ording tothe de�nitions, it means that M0(∆) ∈ Bk or equivalently ∆ belongs to Bk.Therefore E ⊂ Bk. We 
on
lude that E = Bk.� Note that in fa
t Bk is the kernel of πk ◦M1 ◦M0. Sin
e rank(πk ◦M1 ◦M0)is less or equal to 4, and greater or equal to 1, we have simultaneously

60 ≤ dim(Bk) ≤ 63 and the probability that ∆ belongs to Bk when ∆ israndomly 
hosen, is equal to dim(Bk)
264 . The results follows.

⊓⊔Proof of Lemma 1: First re
all that Bk = 〈ej | πk ◦ M1(ej) = 0〉 and Ek =
〈ej | πk ◦ M1(ej) 6= 0〉. Let j and k be two distin
t integers, then the following
onditions are equivalent.� Ej ∩ Ek = {0}.� πk ◦ M1(ei) = 0 or πj ◦ M1(ei) = 0 for any integer i ∈ [1, 64].� πk ◦ M1(X) = 0 or πj ◦ M1(X) = 0 for any ve
tor X ∈ IF64

2 .We 
on
lude that if X ∈ Ej and Ej∩Ek = {0} then πk◦M1(X) = 0 or equivalently
X ∈ Bk.Consider X 6= 0 belonging to ⋂

j 6=k

Bj . We have that πj ◦ M1(X) = 0 for any
j 6= k. Note that M1 is inje
tive. Therefore M1(X) 6= 0 and πk ◦M1(X) 6= 0. We




on
lude that all the bits of M1(X) that tou
h bj (j 6= k) are zeros. Therefore,for any non-zero 
omponent ei of X , M1(ei) tou
hes bk or equivalently X ∈ Ek,and ⋂
j 6=k

Bj ⊂ Ek.Let us use an argument by 
ontraposition. Consider ei /∈
⋂

j 6=k

Bj. Then, thereexists j 6= k, su
h that ei /∈ Bj, i.e. πj ◦ M1(ei) 6= 0 or equivalently ei ∈ Ej .Therefore, a

ording to the previous three equivalent 
onditions, ei /∈ Ek. Wededu
e that for any ei ∈ Ek we have ei ∈
⋂

j 6=k

Bj . It means that Ek = 〈ei | ei ∈

Ek〉 ⊂
⋂

j 6=k

Bj . We 
on
lude Ek =
⋂

j 6=k

Bj .
�Proof of Property 2: Let ei be an element of Ek and j be an element of Jk.We have πk ◦M1(ei) 6= 0 and Ej ∩Ek = {0}. It implies that πj ◦M1(ei) = 0, and

ei ∈ Bj. Therefore, ei ∈
⋂

j∈Jk

Bj, and 〈ei | ei ∈ Ek〉 ⊂ Êk. ⊓⊔Proof of Property 3: We will �rst prove that (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = IF64
2 .Consider a 
anoni
al ve
tor ek /∈ Bi∩Bj . This is equivalent to πi ◦M1(ek) 6= 0 or

πj ◦M1(ek) 6= 0. In other words ek ∈ Ei or ek ∈ Ej , or equivalently ek ∈ 〈Ei∪Ej〉.This means that for any 
anoni
al ve
tors ek of IF64
2 , we have either ek belongsto Bi ∩ Bj or ek belongs to 〈Ei ∪ Ej〉.Assume that there exists a 
anoni
al ve
tor ek ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉. We have

πi ◦M1(ek) = πj ◦M1(ek) = 0, and either πi ◦M1(ek) 6= 0 or πj ◦M1(ek) 6= 0. Itleads to a 
ontradi
tion. Hen
e (Bi∩Bj)∩〈Ei∪Ej〉 
ontains no 
anoni
al ve
tors.Assume now that there exists an element ∆ ∈ (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 having anon-zero 
omponent ek. The ve
tor ∆ belongs to (Bi ∩ Bj), hen
e ek belongsto (Bi ∩ Bj). Moreover ∆ belongs to 〈Ei ∪ Ej〉, hen
e ek belongs to 〈Ei ∪ Ej〉.Therefore ek belongs to (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 whi
h is impossible. We 
on
ludethat (Bi ∩ Bj) ∩ 〈Ei ∪ Ej〉 = {0}. Therefore (Bi ∩ Bj) ⊕ 〈Ei ∪ Ej〉 = IF64
2 .We dedu
e that

64 = dim(〈Ei ∪ Ej〉) + dim(Bi ∩ Bj)
= dim(Ei + Ej) + dim(Bi ∩ Bj)
= dim(Ei) + dim(Ej) − dim(Ei ∩ Ej) + dim(Bi ∩ Bj)Moreover Ei⊕Bi = IF64

2 = Ej ⊕Bj. Hen
e 64 = 64−dim(Bi)+64−dim(Bj)−
dim(Ei ∩ Ej) + dim(Bi ∩ Bj). The result follows. ⊓⊔Appendix B: Figures



Fig. 7. �Naked-DES� and �Nonstandard-DES�



Fig. 8. General view of the atta
k


