
COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

72

Towards a Third Order Side Channel Analysis Resistant
Table Recomputation Method

Guillaume Fumaroli, Louis Goubin, Sylvain Lachartre, and Ange Martinelli

{guillaume.fumaroli, sylvain.lachartre, jean.martinelli}@fr.thalesgroup.com,
louis.goubin@prism.uvsq.fr

Abstract. SCA exploits the instantaneous leakage from a physical implementation at
a time t to recover some information about the data it processes at time t. Countermea-
sures against (first-order) SCA consists in splitting the internal state of the algorithm
in several random shares and processing this shares individually. However, d-th order
SCA that leverage the information leaked at d times can be mounted to bypass coun-
termeasures that provide (d−1)-th order SCA resistance. While higher order SCA has
been thoroughly investigated during the last decade, countermeasures against these
attacks received much less attention. In this paper we propose an extension of a known
second order countermeasure to order 3 and we give some implementation results.
Keywords: Side-Channel Attacks, CPA, MIA, Masking, Matrix Product

1 Introduction

Side Channel Analysis (SCA for short) is a cryptanalytic technique that exploits information
leaked, during the execution of a cryptographic algorithm on an embedded system, through
physical channel as power consumption or electromagnetic emanations. SCA makes use of
the fact that this leakage is statistically dependent on the intermediate variables that are
processed. In particular, some of these variables, called sensitive, are related to secret data, and
recovering information on them allows efficient cryptanalysis [3, 1, 2]. We call dth-order SCA
(written dO-SCA) a SCA that exploits leakages at d different times, which are respectively
associated with d different intermediate variables. An implementation of a cryptographic
algorithm is said to provide dth-order resistance if no d-tuple of its intermediate variables is
sensitive, i.e. is statistically dependent of secret data and plaintext. If not, the implementation
possess a d-order flaw. First order countermeasures are now well known and implemented.
In [5] Rivain et al. present a S-box recomputation method proven secure against second
order SCA. The authors left it as an open problem to design a third order SCA secure S-
box recomputation method. This paper presents an almost third order SCA secure S-box
recomputation method.

2 S-box recomputation secured against third order SCA

2.1 From second order S-box recomputation to third order

In order to extend the S-box recomputation algorithm given in [5] by Rivain et al. to order 3,
a straightforward method consists in using two random masks where one was previously used.
We denote by (α, n)-LUT a look-up table (LUT for short) with α n-bit entries. Listing the
intermediate variables of this algorithm, we can state that such an extension is clearly un-
secured. In order to secure the masking of the S-box output, and the manipulation of the
temporary mask r′, two additional temporary masks must be employed. It leads to Algo-
rithm 1.

Algorithm 1
Input: x̃ = x⊕r1⊕r2⊕r3 ∈ Fn

2 , (r1, r2, r3) ∈ (Fn
2 )3, (s1, s2, s3) ∈ (Fm

2 )3, a LUT for the (n,m)-S-box
S
Output: S(x)⊕ s1 ⊕ s2 ⊕ s3
1. r4, r5, r6 ← rand(Fn

2 )

2. r7 ← rand(Fm
2 )



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

73

3. r′ ← (r1 ⊕ r4)⊕ (r2 ⊕ r5)⊕ r3
4. for a = 0 to 2n − 1 do

5. a′ ← a⊕ r′
6. T [a′]← ((S(x̃⊕ (a⊕ r6))⊕ (s1 ⊕ r7))⊕ s2)⊕ s3
7. Return T [r4 ⊕ r5 ⊕ r6]⊕ r7

In spite of the previous modification, listing the intermediate variables Ij , we can state
that there exist a unique third order flaw with the triplet (I1, I2, I3) as I1 ⊕ I2 ⊕ I3 = x:

– I1 = a⊕ r1 ⊕ r4 ⊕ r2 ⊕ r5 ⊕ r3 [step 5]
– I2 = r4 ⊕ r5 ⊕ r6 [step 7]
– I3 = x⊕ r1 ⊕ r2 ⊕ r3 ⊕ a⊕ r6. [step 6]

Let α1 = r1 ⊕ r2 ⊕ r3, α2 = r4 ⊕ r5 and α3 = r6, then we can re-write the previous
equations as :

– I1 = a⊕ α1 ⊕ α2

– I2 = α2 ⊕ α3

– I3 = x⊕ α1 ⊕ a⊕ α3.

In order to confirm that this is the only flaw, we used a program that checks all the second
and third order dependencies to x given the list of all the intermediate variables. This flaw
cannot be secured with only exclusive or (xor for short) masking. Indeed, masks are used to
cover the progression of the sensitive variable x through the computation of S(x) (steps 5,6),
so x has to be unmasked at the output of the algorithm (step 7). More precisely we want to
compute S(x) ⊕ s1 ⊕ s2 ⊕ s3 using a table T in order to avoid manipulating x directly. We
then compute, for all a in the input space, T [a] = S(x⊕ a⊕M), where M is a random mask.
To recover S(x) we then evaluate T [M ]. In order to give a higher security, we also mask x, a,
and M with random temporary masks (ri)0≤i≤n3 :

T [a] = S

(
(x

n1⊕

i=0

ri)⊕ (a
n2⊕

i=n1

ri)⊕ (M
n3⊕

i=n2

ri)

)
.

Moreover we have that
⊕n3

i=0 ri = 0 to achieve that T [M ] = S(x). Hence knowing I1 = M ,
I2 = (a

⊕n2
i=n1

ri)⊕ (M
⊕n3

i=n2
ri), and I3 = x

⊕n1
i=0 ri, we have a third order flaw.

2.2 Core Idea

In order to increase the security given by Algorithm 1 we have to introduce another operation
than xor . The idea of the countermeasure is to mask masks with an operation invertible and
distributive over xor, e.g. product with a well distributed invertible matrix. In the sequel we
give Algorithm 2 and discuss its performances and resistance against third order SCA.

Algorithm 2
Input: x̃ = x⊕r1⊕r2⊕r3 ∈ Fn

2 , (r1, r2, r3) ∈ (Fn
2 )3, (s1, s2, s3) ∈ (Fm

2 )3, a LUT for the (n,m)-S-box
S, matrices R and R−1 in M∗n(GF(2))
Output: S(x)⊕ s1 ⊕ s2 ⊕ s3
1. r4, r5, r6 ← rand(Fn

2 )

2. r7 ← rand(Fm
2 )

3. r′ ← (r1 ⊕ r4)⊕ (r2 ⊕ r5)⊕ r3
4. for a = 0 to 2n − 1 do

5. a′ ← a⊕R−1 · r′
6. T [a′]← ((S(x̃⊕R(a⊕R−1 · r6))⊕ (s1 ⊕ r7))⊕ s2)⊕ s3
7. T [R−1 · r4 ⊕ (R−1 · r5 ⊕R−1 · r6)]⊕ r7

The matrices R and R−1 are generated once at the beginning of each computation and
used for every S-boxes through the algorithm.



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

74

3 Efficiently implementing the matrix product

In Algorithm 2 every operation is easy to compute, except for the matrix product. Hence
it is necessary to devise an efficient algorithm for inverting and computing a matrix-vector
product. In the sequel of this section we propose to simultaneously generate two LUT T
and T−1 to represent this operation and its inverse. Computing the product then consists in
evaluating T [x].

Recall that a n-bit Gray code C is a binary encoding where two successive values (called
codewords) differ in only one bit. Let ci ∈ C, with 0 ≤ i ≤ 2n− 1, denote the i-th Gray n−bit
codeword, where c0 = 0 and c1 = 1. Let Ci = log2(ci⊕ ci+1), with 0 ≤ i ≤ 2n− 1, denote the
position of the modified bit between Gray codewords ci and ci+1.

Let us denote by Ri the (i + 1)-th column of R. Based on the properties of the Gray
code, it can be checked that R · ci+1 = (R · ci)⊕RCi

. This suggests the iterative Algorithm 3
for building the LUT of the product x 7→ R · x. Let N = 2n − 1, the binary complexity of
Algorithm 3 is 2N xor operations, N shifts and 6N + 2 table lookups, and each product
involves one table look-up. Online computation for its part, involves for each computation n2

and operations and n2 xor, and inverting R has a complexity in O(n3).

Algorithm 3
Input: R = (R0, R1, . . . , Rn−1) ∈M∗n(GF(2)) where Ri denotes the (i+ 1)-th column of R, C: the
(2n − 1, log2(n))-LUT such that C[i] = log2(ci ⊕ ci+1) where (ci)i are the n−bit Gray codewords
with c0 = 0 and c1 = 1
Output: The (2n, n)-LUTs T and T−1 such that T [x] = R·x and T−1[x] = R−1·x for all x ∈ GF(2)n

1. T [0]← 0

2. T−1[0]← 0

3. c′ ← 0

4. for i = 0 to 2n − 2 do

5. c← c′ ⊕ 2C[i]

6. T [c]← T [c′]⊕RC[i]

7. T−1[T [c]]← c

8. c′ ← c

9. Return (T, T−1)

4 Security of the scheme

4.1 Security against third order SCA

In order to assess the security of Algorithm 2 against third order SCA, we list all the interme-
diate variables involved in the computation and check the dependency between each 3-tuple
of these variables and a sensitive variable, i.e. x or S(x).

We can check that the three intermediates variables involved in the flaw of Algorithm 1
do not appear in the computation of Algorithm 2. Indeed, the three intermediate variables
corresponding in Algorithm 2 now are :

– I1 = a⊕R−1(r1 ⊕ r4 ⊕ r2 ⊕ r5 ⊕ r3) [step 5]
– I2 = R−1(r4 ⊕ r5 ⊕ r6) [step 7]
– I3 = x⊕ r1 ⊕ r2 ⊕ r3 ⊕R(a⊕R−1r6) [step 6]

Or using the notation introduced in section 2.1 :

– I1 = a⊕R−1(α1 ⊕ α2)
– I2 = R−1(α2 ⊕ α3)
– I3 = x⊕ α1 ⊕R(a⊕R−1α3)

As a is a loop variable, it is equivalent for the adversary to set a = 0, then

I1 ⊕ I2 ⊕ I3 = x⊕ α1 ⊕ α3 ⊕R−1(α1 ⊕ α3).



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

75

Let us define r = r1 ⊕ r2 ⊕ r3 ⊕ r6 = α1 ⊕ α3, and let Idn be the identity matrix of size
n, we can state that the protection is assumed by m = r ⊕ R−1r = (Idn ⊕ R−1)r. We want
to know the distribution of m. Remark that if m is uniformly distributed, then m cannot
be distinguished from random, and the countermeasure is secure. In order to evaluate this
distribution we generate all invertible matrices R of size n, and every n-bit vector r, then
we count the occurrences of each value m′ = r ⊕ R · r. We can state that the repartition is
uniform for non-zero values, but 0 appear with a probability 1/2n−1. This result implies that
the countermeasure is not theoretically secured. Let us now evaluate the practical impact of
this bias upon the security of the scheme.

4.2 Attack simulation

We have seen in section 4.1 that the countermeasure is theoretically unsecured against third
order SCA. We want to evaluate the practical security of the scheme against known attacks,
and compare it to the security given by a straightforward extension. The simulated attacks
target a masked 8-bit S-box computation (e.g. the AES S-box). In both case, the targeted
variables are given in table 4.2.

Variable Straightforward extension This paper

I1 a⊕ α1 ⊕ α2 R−1(α1 ⊕ α2)

I2 α2 ⊕ α3 R−1(α2 ⊕ α3)

I3 x⊕ α1 ⊕ a⊕ α3 x⊕ α1 ⊕R(R−1α3)

Table 1. Simulated variables targeted by the attacks.

Eventually, we perform two attacks: a third order CPA with normalized product combining
and the Hamming weight as prediction function, and a third order MIA with the Hamming
weight as prediction function. For third-order MIA, we use the histogram method with Scott’s
rule for the probability density estimation [4].

All the attack simulations are based on a Hamming weight leakage model with additional
Gaussian noise. Namely, the leakage measurements are simulated as samples of the random
variables Li = ϕ(Ii)+Bi for ϕ being the Hamming weight function and the Bi’s being indepen-
dent Gaussian random variables with mean 0 and standard deviation σ ∈ {0,

√
2, 2,
√

10, 2
√

5}
(which corresponds to SNR values respectively +∞, 1, 1/2, 1/5 and 1/10). The number of
leakage measurements needed to perform the attacks are summarized in Table 2. In particular,
in the case of real noise setting (SNR ≥ 1/2), the attack is clearly impractical.

Attack \ SNR +∞ 1 1/2 1/5 1/10

3O-CPA on Straightforward extension 5500 8000 30000 250000 > 106

3O-CPA on This paper > 106 > 106 > 106 > 106 > 106

3O-MIA on Straightforward extension 30000 350000 > 106 > 106 > 106

3O-MIA on This paper > 106 > 106 > 106 > 106 > 106

Table 2. Number of leakage measurements for a 90% success rate.

5 Conclusion

In this paper, we introduced a method aiming to thwart third order SCA. The core idea
is to use matrix product to enable the extension of Rivain et al.’s countermeasure to third
order SCA. While this algorithm is not theoretically secure against third order SCA, it can
be proven theoretically secure against second order SCA, and practically secure against third
order SCA in real world noisy setting.

Acknowledgements. The authors wish to thank Emmanuel Prouff for his helpful comments
and discussions about preliminary versions of this work.



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

76

References

1. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems – CHES
2004, volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

2. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual Information Analysis. In
Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems –
CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages 426–442. Springer, 2008.

3. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M.J. Wiener, editor, Advances in
Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

4. Emmanuel Prouff and Matthieu Rivain. Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, Applied Cryptography and Network Security – ANCS 2009, volume
5536 of Lecture Notes in Computer Science, pages 499–518. Springer, 2009.

5. Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block Ciphers Implementations
Provably Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive, Report
2008/021, 2008. http://eprint.iacr.org/.


