
On the Design of a Processor Working Over
Encrypted Data

Thomas Hiscock, Olivier Savry
Univ. Grenoble Alpes,

F-38000 Grenoble, France.
CEA, LETI, MINATEC Campus,

F-38054 Grenoble, France.
Email: thomas.hiscock@cea.fr, olivier.savry@cea.fr

Louis Goubin
Laboratoire de Mathmatiques de Versailles,

UVSQ, CNRS, Universit Paris-Saclay,
F-78035 Versailles, France.

Email: louis.goubin@uvsq.fr

Abstract—Gentry’s breakthrough of Fully Homomorphic En-
cryption (FHE) in 2009 revolutionized the field of secure compu-
tation. Since then, most applications of homomorphic encryption
have been oriented towards offloading computations to the cloud
in a secure fashion. Indeed, the user usually does not have full
confidence in the cloud provider and wants to keep its data
secrecy. A similar situation appears in most embedded systems,
where information leakages through hardware or software side-
channel attacks might compromise data confidentiality.

In this work, we attempt to leverage Homomorphic Encryption
in a different threat model, adapted to CPS (Cyber-Physical
Systems) use cases. The main challenge is that, even today’s
most promising FHE schemes remain orders of magnitude too
big to fit in a constrained system. To address this issue, we
show how a trade-off can be achieved by securing a noise
reduction module against side-channel leakages. This approach is
described and evaluated on FPGA using the BGV scheme, a very
efficient homomorphic scheme based on Ring-LWE encryption.
We conclude that such homomorphic encryption can fit in an
embedded system, while offering reasonable performances with
respect to the security provided.

I. INTRODUCTION

Memory isolation in processors is a fundamental building
block for programs security. It ensures that a given program
cannot access or modify the memory of another program. On
most processors, memory isolation is enforced using virtual
memory, which exposes different address spaces for different
processes. Access permissions are checked on every access by
a special component, known as the memory management unit
(MMU).

However, such isolation is not as strong as expected in many
use cases. For instance, a system physically close to the user
like an embedded system is subject to a wide range of physical
attacks. External memories like FLASH, or DRAMs may be
extracted, disclosing anything stored in memory. Other exam-
ple threats include logical interfaces (debug, JTAG) which are
accessible to an attacker, buses that can be physically probed
and also side-channel attacks [1] that can extract sensible
information from physical observations (power consumption,
electromagnetic field, acoustic noise...). Even without a physi-
cal access, memory isolation can be bypassed by the so-called
software side-channel attacks. Indeed, it has been known for
years that information may leak through caches memories [2],

[3], with attacks like Flush+Reload [4] or Prime+Probe [3].
Recently, the Spectre [5] and Meltdown [6] attacks showed
that some microarchitectural elements (related to speculative
execution and Out-of-Order execution) can be exploited to
leak critical information, like bits from kernel memory. As
these attacks are purely software-based, they can be executed
remotely.

A stronger isolation can be achieved with memory encryp-
tion and is used in many architectures [7]. Observing only the
encrypted data cannot leak information as long as the keys
are managed properly. Encryption and decryption are usually
inserted between the chip and the memory interfaces, so that
nothing can be extracted from memories. However, leakages
on shared hardware like caches, branch predictors or other
microarchitectural elements remain possible. Indeed, data still
needs to be decrypted to be processed and any hardware
influenced by these unencrypted values might introduce a
leakage.

Fully Homomorphic Encryption (FHE), discovered by Gen-
try in 2009 [8], allows arbitrary computation over encrypted
data. The typical application of this scheme is considered
in the cloud, where the user does not have any trust in the
service provider. To maintain its privacy, his data must remain
encrypted from end to end. In this work, we attempt to leverage
Homomorphic Encryption in a totally different threat model,
adapted to CPS (Cyber-Physical Systems) like an autonomous
car where the manufacturer of a product has a total control
over it during all its life cycle and as a consequence it is
confident about the management of its hardware platform.
Those applications challenge us to rethink homomorphic en-
cryption to fit in embedded processors. Indeed, FHE offers
a very convenient protection, since it allows data to remain
encrypted in memory and even during computations. It can
still be processed, without any fear of information leakage.

However, homomorphic encryption is sadly known to be in-
efficient. Since Gentry’s breakthrough, the only way to achieve
fully homomorphic encryption remains through a procedure
called the bootstrapping. In a nutshell, the bootstrapping is
the process of evaluating the decryption function homomor-
phically, over an encrypted ciphertext (that is, two layers of
encryption). The bootstrapping is an important bottleneck in



the performances of FHE. And many active research try to
tackle this issue by proposing schemes with more efficient
bootstrapping [9].

Contributions: In this work, we describe our approach
to design a processor working over encrypted data. The
performance bottleneck implied by the bootstrapping is pro-
hibitive for an embedded implementation. As an alternative,
we propose an approach which is consistent with a CPS use
case model where it is reasonable (and often needed) to store a
secret key in a protected way in the core of the processor. The
bootstrapping procedure is then transformed into an efficient
hardware noise refreshing procedure, which achieves the same
functionality but is secure under some hypothesis that we
detail. Finally, we evaluate the hardware cost with a FPGA
implementation and discuss the synthesis results. We conclude
by evaluating the performances of a homomorphic evaluation
of an AES circuit and compare it with current state of the art
results.

II. DESCRIPTION OF THE ARCHITECTURE

Before diving into the details, let first draw an overview
of the architecture. A given algorithm to be protected, is
first transformed into a circuit, namely, a directed acyclic
graph of high-level operations. Through this process, condi-
tional branches are turned into a multiplexor form, using if-
conversion, and all loops are unrolled. An example of such
conversion is shown in Figure 1. Once transformed into a
circuit, the algorithm becomes constant time and memory
oblivious (memory accesses are independent of the input data).

int square_or_inc(int x, int b) {
if (b == 0) return x * x;
else return x + 1;

}
(a) Example program

b

0

x

1

=

∗

+
result

(b) Equivalent circuit

Fig. 1: Example of a simple program to circuit transformation
for homomorphic evaluation

From the high-level circuit, all operations (like integer
arithmetic, comparisons, ...) are lowered to a very small set
of low-level operations. We selected the Brakerski, Gentry,
Vaikuntanathan (BGV) [10] scheme to implement homomor-
phic operations. With a suited, encoding it can provide the
logical operations XOR, AND and bit shifting on 8 bits
data. To end up the conversion, all inputs and intermediate
constants nodes of the circuit are encrypted under a public
key and stored into memory. The circuit of lowered operations

is then converted to an assembly program (calling mostly
homomorphic operations) evaluating it.

Each basic homomorphic operation is followed by a refresh-
ing operation, whose purpose is to maintain a tight bound on
the noise in a ciphertext. The next section describe our efficient
implementation of this operation.

A. An Efficient Noise Refreshing Procedure

After too many homomorphic evaluations, the noise in a
ciphertext becomes too high and decryption correctness cannot
be guaranteed anymore. When such situation occurs, the so-
called bootstrapping technique must be used. In a nutshell, the
bootstrapping is the process of evaluating the decryption func-
tion over encrypted data. Since Gentry’s breakthrough work
in 2009 [8], it remains the only known way to achieve Fully
Homomorphic Encryption (FHE). Several paths are explored
to improve the efficiency of homomorphic encryption, either
through theoretical improvements on the scheme itself [9], or
with better algorithms.

A straightforward, but efficient way to achieve an boot-
strapping functionality is to decrypt the ciphertext (which
removes the noise) and then encrypt it back. This produces
a ciphertext with better noise bounds satisfied, thus called a
”fresh ciphertext”. Obviously, this introduces a security issue,
as the secret key is required for the decryption, and the clear
message will be manipulated in various places.

However, considering a hardware implementation, this flow
can be secured. An overview of our secure recryption proce-
dure is depicted Fig. 2. Before being decrypted (Fig. 2), the
encryption of a random value is added to the input message
(denoted m). The additive property of the homomorphic
encryption allow this mask to be applied and removed in
an oblivious way on the ciphertext. A similar technique was
used in [11] on a RLWE encryption scheme to randomize
the decryption against DPA (unfortunately, no formal security
could be proved). Here, the goal isn’t to randomize the
decryption (which is already assumed leak-free) but rather
to protect the intermediate plain message m over potential
leakages during the encryption.

The security of the noise refereshing procedure depicted on
Fig. 2 relies on two assumptions :

1) The decryption implementation must be leak-free or
designed to be resilient against d-th order attacks. Such
resilience can be achieve with a generic masking scheme
like ISW [12] or by adapting the probabilistic decoder
of [13].

2) The generation of the random encryption, the term
Encryptpk(r), must be leak-free.

Under these assumptions, in the worst possible situation
an adversary would only be able to recover Encryptpk(m),
Encryptpk(r), m ⊕ r. In this context, the security falls into
a classic key encapsulation mechanism (see [14], theorem
11.12), extensively used in practice to establish symmetric
communications channels. The value r can be seen as a private
key being encrypted under the public key and m ⊕ r be an
encryption (using a one-time pad) of m. In other words, an



Decryptsk Encryptpk⊕ ⊕

Encryptpk(r)

Evalpk, f

Noise generation

Encryptpk(m0)

Encryptpk(m1)
Encryptpk(f(m0, m1))

f(m0, m1)⊕ rNoisy ciphertext

Fig. 2: Data flow of the proposed hardware noise refreshing procedure

adversary cannot learn anything about either m or r from
these three values, otherwise, it would break the IND-CPA
security of the encryption scheme (which holds under the
RLWE assumption).

A good property of this approach is that there is no need
to protect the encryption function against leakages. Several
strategies can be applied to generate the random encryption
term Encryptpk(r):

• a first one would be to store them into a huge storage
and use them only once. Obviously this seems to limit
the range of applications.

• A second one is to generate uniformly random values and
encrypt them. This has to be done in a tamper proof area,
so that nothing leaks about r.

• Another interesting approach would be to design a PRNG
for such values, which would have stable noise mag-
nitude. Whether this is possible is an open question,
needless to say it would have interesting applications.

III. EVALUATION

A. Implementation

The architecture described in this paper is currently imple-
mented in a mixed software hardware design targeting FPGA.
The whole homomorphic-related components are grouped into
a tile (see Fig. 3), that we call a homomorphic processing
element. It receives execution commands (assembly-like in-
structions) from a classical core, and shares a section of the
main DDR3 memory with the CPU. A MIPS soft core is
currently used for this purpose, but any soft core processor
would be fine for this task.

Fast modular multiplication is done using Barrett quotient
approximation method. The resulting circuit is fully pipelined
and has an initialization delay of 9 cycles. Polynomial multi-
plication is done using using the analogous of the Fast Fourier
Transform over a finite field called the Number Theoric
Transform (NTT) [15]. The NTT is implemented using a
fully pipelined radix-2 butterfly connected to banked RAMs
to support parallel memory accesses.

All uniformly random values are generated with Triv-
ium [16] stream ciphers seeded randomly. A standalone Triv-
ium can generate up to 64 bits per clock cycle without

Fig. 3: Integration of an homomorphic element into a SoC

increasing circuit depth. To generate more bits per clock cycle,
these circuits are just replicated in parallel.

Another important component required by the BGV is a
sampler for Gaussian distributions. The sampler is imple-
mented using an inversion-based method [17] with sufficient
buffered output to produce one sample per clock cycle.

B. Results
The design depicted in Figure 3 is successfully synthesized

on a mid-range Intel FPGA ArriaV-GX. The system is clocked
at 100 Mhz, and the maximum achievable frequency is 128
MHz. This is obtained with the optimization profile set to
”balanced” (the default option) in Quartus.

Synthesis results are given in Table I. The discrete Gaussian
sampler is clearly the biggest component, and two of them are
required in a single encryption core. The remaining compo-
nents have a pretty low reconfigurable blocks (called ALM for
Intel FPGAs) usage.

This component achieves pretty good performances. Indeed,
a homomorphic XOR including refreshing requires txor =
309.9µs and a homomorphic AND requires tand = 310µs.

TABLE I: Synthesis results on FPGA Arria V GX

Component Adaptive Logic
Module (ALM)

DSP multipliers BRAM

NTT 628 (0.4%) 11 (1%) 68KB (3.1%)
Gauss 1881 (1.3%) - -
Encrypt 7521 (5.49%) 77 (7.3%) 245KB (11%)
Decrypt 1866 (1.36%) 55 (5.2%) 68KB (3.1%)
Recrypt 9387 (6.85%) 132 (12.5%) 313KB (20%)



C. Performance Estimation on AES Evaluation

We selected the AES algorithm as a case study to evaluate
the performances of the proposed architecture. The AES
algorithm, is a widely adopted benchmark for homomorphic
encryption. Our motivation to explore homomorphic AES
evaluation is to perform encryption or decryption, while fully
hiding the secret key. First we built an assembly program that
evaluates the AES algorithm (as discussed in section II). We
applied a very systematic translation manually, which includes
replacing substitution boxes (SBox) with their evaluation func-
tion, and then lowering every operation into an equivalent
boolean circuit. Hopefully, some open-source tools are now
available (e.g., Cingulata1, formally known as Armadillo [18])
and may help to automate the translation process. Moreover,
such approach should be able to produce a far more optimized
circuits2 compared to the manual approach we adopted.

We then simulated the execution and measured each in-
struction count. This allowed us to build the Table II, where
we each instruction is associated with its count as well as a
runtime estimation based on our synthesis results.

TABLE II: Instruction repartition for an homomorphic AES
execution

Instruction Count Estimated time
Or 165233 929.8µs (2txor + tand)

ShiftL 151830 309.9µs (txor)
And 110201 310µs
Xor 72502 309.9µs

Memory Operation 68770 4.7µs
ShiftR 67990 309.9µs (txor)

Non homomorphic operation 63221 ≈ 10ns

Putting it all together, we found that with our approach,
one can evaluate an AES in 4 minutes using 171 MB of
RAM. This compare well with [19] who reported an evaluation
time of 14 min (which includes pre and post encryption time)
and 3 GB of RAMs on a modern desktop computed and a
somewhat homomorphic version of the BGV scheme. A fully
homomorphic BGV evaluation requires in the same setting 62
min and 3.7 GB of RAM. The latter should be compared with
our results, since we may continue to perform computations
afterwards.

Thus, our approach drastically reduces the memory cost
in terms of memory (by a factor ×30) and is faster than
the fully homomorphic version of [19]. Furthermore, our
implementation is likely to be more power-efficient.

IV. CONCLUSION

In this paper we presented an architecture to protect data
confidentiality on systems where memory can be extracted and
are subject to passive non-invasive side channel attacks. Such
architecture can be seen as a tool to enforce very strong isola-
tion, completely free from information leakages. Our approach
benefits the advantages of fully homomorphic encryption.

1https://github.com/CEA-LIST/Cingulata
2Generating an optimal circuit for a given algorithm is close to a hardware

synthesis problem

Namely, it provides a convenient reasoning framework about
securing arbitrary program execution.

Another contribution of this work was an efficient noise re-
freshing procedure, as an alternative to bootstrapping. We saw
that if one is able to protect very well-defined components of
this slightly modified encryption scheme, the whole evaluation
chain can be secured. This allows to drastically reduce the
parameters and make the scheme as efficient as a somewhat
homomorphic one. Finally, this architecture was successfully
implemented and evaluated on a FPGA, which demonstrates
interesting performances regarding the generality and security
achieved.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in CRYPTO’96 (N. Koblitz, ed.),
vol. 1109 of LNCS, pp. 104–113, Springer, Heidelberg, Aug. 1996.

[2] C. Percival, “Cache missing for fun and profit,” 2005.
[3] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-

sures: the case of aes,” in Cryptographers Track at the RSA Conference,
pp. 1–20, Springer, 2006.

[4] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack.,” in USENIX Security Symposium, pp. 719–
732, 2014.

[5] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[6] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[7] M. Henson and S. Taylor, “Memory encryption: A survey of existing
techniques,” ACM Computing Surveys (CSUR), vol. 46, no. 4, p. 53,
2014.

[8] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
41st ACM STOC (M. Mitzenmacher, ed.), pp. 169–178, ACM Press,
May / June 2009.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachne, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds.”
Cryptology ePrint Archive, Report 2016/870, 2016. https://eprint.iacr.
org/2016/870.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in ITCS 2012 (S. Gold-
wasser, ed.), pp. 309–325, ACM, Jan. 2012.

[11] O. Reparaz, R. Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Additively homomorphic ring-LWE masking,” Post-Quantum Cryptog-
raphy, Jan. 2016.

[12] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Securing hardware
against probing attacks,” in CRYPTO 2003 (D. Boneh, ed.), vol. 2729
of LNCS, pp. 463–481, Springer, Heidelberg, Aug. 2003.

[13] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “A masked
ring-LWE implementation,” in CHES 2015 (T. Güneysu and H. Hand-
schuh, eds.), vol. 9293 of LNCS, pp. 683–702, Springer, Heidelberg,
Sept. 2015.

[14] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC Press,
2014.

[15] J. M. Pollard, “The fast fourier transform in a finite field,” Mathematics
of computation, vol. 25, no. 114, pp. 365–374, 1971.

[16] M. Rogawski, “Hardware evaluation of eSTREAM candidates,” 2007.
[17] N. C. Dwarakanath and S. D. Galbraith, “Sampling from discrete gaus-

sians for lattice-based cryptography on a constrained device,” Applicable
Algebra in Engineering, Communication and Computing, vol. 25, no. 3,
pp. 159–180, 2014.

[18] S. Carpov, P. Dubrulle, and R. Sirdey, “Armadillo: a compilation chain
for privacy preserving applications.” Cryptology ePrint Archive, Report
2014/988, 2014. https://eprint.iacr.org/2014/988.

[19] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the
AES circuit,” in CRYPTO 2012 (R. Safavi-Naini and R. Canetti, eds.),
vol. 7417 of LNCS, pp. 850–867, Springer, Heidelberg, Aug. 2012.

https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2016/870
https://eprint.iacr.org/2014/988

	Introduction
	Description of the Architecture
	An Efficient Noise Refreshing Procedure

	Evaluation
	Implementation
	Results
	Performance Estimation on AES Evaluation

	Conclusion
	References

