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Abstract. In 1985 H. Fell and W. Diffie studied a paradigm for con-
structing public key cryptosystems based on sequentially solved multi-
variate equations [9], which can be seen as a triangular system. In the
present paper, we study a more general family of TPM (for “Triangle
Plus Minus”) schemes. A TPM is a triangular construction, with added
u final random polynomials and r beginning equations removed.
We go beyond all previous attacks proposed on such cryptosystems, that
used the low degree of a component of the inverse function. We show that
the the cryptanalysis of TPM reduces to solving a simple linear algebra
problem called MinRank(r): Find a linear combination of given matrices
that has a small rank r.
We present a new algorithm for the MinRank(r) problem and the TPM
cryptosystems. It is called ‘Kernel Attack’ and is polynomial for a fixed
r. As an application of this technique, we present two different attacks
on the TTM cryptosystem proposed by T.T. Moh at CrypTec’99 [13, 14]
with r = 2.
Though the TTM cleartext is 512 bits long, we are able to completely
break TTM (i.e. to recover the secret key) in O(252). Moreover, the
particular cryptosystem described in [13, 14] has additional weaknesses
that allows an attack in O(228).
The attacks we describe are both theoretical and pratical: as an exam-
ple, we present the solution to the TTM 2.1 challenge proposed by the
company US Data Security, currently selling implementations of TTM.
We conclude that no scheme in the TPM class is secure.

1 Introduction

The research effort to bring further the practical public key cryptography in-
troduced by R. Rivest, A. Shamir and L. Adleman, with univariate polynomials
over Z/NZ, is following two paths. The first is considering more complex groups,
e.g. elliptic curves. The second is considering multivariate equations. Many pro-
posed schemes are being broken, some of them remain unbroken even for the
simplest groups like Z/2Z.

One of the paradigms for constructing multivariate trapdoor cryptosystems
is the triangular construction, proposed initially in an iterated form by H. Fell



and W. Diffie (1985). It uses equations that involve 1, 2, . . . , n variables and
are solved sequentially. The special form of the equations is hidden by two linear
transformations on inputs (variables) and outputs (equations). We call T this
triangular construction. Let TPM (T Plus-Minus) be T with added final random
polynomials and with some of the beginning equations removed.

The cryptosystem TTM has been proposed by T.T. Moh at CrypTec’99.
TTM, in spite of apparent complexity, proved to be a subcase of TPM design.
After showing a trivial attack using linearities of initially proposed TTM, we
focus on breaking more general TPM schemes.

Recovering the secret key of TPM/TTM leads to the following linear algebra
problem called MinRank. Let M be a n × n matrix with entries being linear
combinations of variables λ1, . . . , λt over GF(q). The MinRank problem consists
in determining whether there is such a valuation for λ1, . . . , λt that Rank(M)
≤ r. The weakness of MinRank instances in TTM lies in the fact that r is small
(r = 2 in T.T. Moh’s paper), while in general MinRank is NP-complete.

First we present an attack that works when qr is small, exploiting the small
co-dimension of the kernel of the unknown matrix. Our attacks break in ap-
proximately 252 a cryptosystem with 512 bit cleartexts. In section 6, we present
the solution (plaintext) to the TTM 2.1 challenge proposed by the company US
Data Security, which is currently selling implementations of TTM. Finally, in
section 5, we present an attack that works on TPM signature schemes when qu

is not too large and breaks TTM signature proposals [13, 14]. As a result, we
conclude that no scheme in the TPM class is secure.

2 The TPM Family of Cryptosystems

2.1 General Description of TPM

In the present section, we describe the general family TPM(n, u, r,K), with:

– n, u, r integers such that r ≤ n. We also systematically put m = n+ u− r.
– K = GF(q) a finite field.

We first consider a function Ψ : Kn 7→ Kn+u−r such that (y1, . . . , yn+u−r) =
Ψ(x1, . . . , xn) is defined by the following system of equations:

y1 = x1 + g1(xn−r+1, . . . , xn)
y2 = x2 + g2(x1 ;xn−r+1, . . . , xn)
y3 = x3 + g3(x1, x2 ;xn−r+1, . . . , xn)

...
yn−r = xn−r + gn−r(x1, . . . , xn−r−1 ;xn−r+1, . . . , xn)
yn−r+1 = gn−r+1(x1, . . . , xn)

...
yn−r+u = gn−r+u(x1, . . . , xn)

with each gi (1 ≤ i ≤ n+u− r) being a randomly chosen quadratic polynomial.



The Public Key
The user selects a random invertible affine transformation s : Kn 7→ Kn, and a

random invertible affine transformation t : Kn+u−r 7→ Kn+u−r. Let F = t◦Ψ ◦s.
By construction, if we denote (y′1, . . . , y

′
n+u−r) = F (x′1, . . . , x

′
n), we obtain an

explicit set {P1, . . . , Pn+u−r} of (n+u−r) quadratic polynomials in n variables,
such that: 

y′1 = P1(x′1, . . . , x
′
n)

...
y′n+u−r = Pn+u−r(x′1, . . . , x

′
n)

This set of (n + u − r) quadratic polynomials constitute the public key of
this TPM(n, u, r,K) cryptosystem. Its size is 1

8 (n+ u− r)(n+ 1)(n2 + 1) log2(q)
bytes.
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Fig. 1. General view of the TPM scheme – The two classes of attacks

2.2 Encryption Protocol (when u ≥ r)

Encrypting a message
Given a plaintext (x′1, . . . , x

′
n) ∈ Kn, the sender computes y′i = Pi(x′1, . . . , x

′
n)

for 1 ≤ i ≤ n + u − r – thanks to the public key – and sends the ciphertext
(y′1, . . . , y

′
n+u−r) ∈ Kn+u−r.



Decrypting a message
Given a ciphertext (y′1, . . . , y

′
n+u−r) ∈ Kn+u−r, the legitimate receiver recovers

the plaintext by the following method.

– Compute (y1, . . . , yn+u−r) = t−1(y′1, . . . , y
′
n+u−r) ;

– Make an exhaustive search on the r-tuple (xn−r+1, . . . , xn) ∈ Kr, until the
n-tuple (x1, . . . , xn) obtained by xi = yi − gi(x1, . . . , xi−1;xn−r+1, . . . , xn)
(for 1 ≤ i ≤ n− r) satisfies the u following equations gi(x1, . . . , xn) = yi (for
n− r + 1 ≤ i ≤ n− r + u).

– For the obtained (x1, . . . , xn) n-tuple, get (x′1, . . . , x
′
n) = s−1(x1, . . . , xn).

This decryption algorithm thus has a complexity essentially O(qr). As a result,
a TPM(n, u, r,K) cryptosystem can be practically used in encryption mode only
under the assumption that qr is “small enough”.

The condition u ≥ r insures that the probability of obtaining a collision is
negligible, and thus that the ciphering function F can be viewed as an injection
from Kn into Kn+u−r.

When r = u = 0, this kind of scheme was already considered and attacked by
H. Fell and W. Diffie in [9] (in an iterated form) and by J. Patarin and the first
author in [16]. All these authors heavily use the fact that the inverse function if
of low degree on some of its variables. The goal of this paper is to extend these
attacks to a much more general case, with r being non-zero (but qr is not too
large) and u is non-zero.

2.3 Signature Protocol (when u ≤ r)

Signing a message
Given a message M , we suppose that (y′1, . . . , y

′
n+u−r) = h(M) ∈ Kn+u−r, with

h being a (collision-free) hash function. To sign the message M , the legitimate
user:

– computes (y1, . . . , yn+u−r) = t−1(y′1, . . . , y
′
n+u−r) ;

– chooses random r-tuples (xn−r+1, . . . , xn), until the n-tuple (x1, . . . , xn) ob-
tained by xi = yi− gi(x1, . . . , xi−1;xn−r+1, . . . , xn) (for 1 ≤ i ≤ n− r) satis-
fies the u following equations gi(x1, . . . , xn) = yi (for n−r+1 ≤ i ≤ n−r+u).

– for the obtained (x1, . . . , xn) n-tuple, gets (x′1, . . . , x
′
n) = s−1(x1, . . . , xn).

This signature algorithm thus has a complexity essentially O(qu). As a result,
a TPM(n, u, r,K) cryptosystem can be practically used in signature mode only
under the assumption that qu is “small enough”.

The condition u ≤ r insures that the probability of finding no solution for
(x1, . . . , xn) for the equation Ψ(x1, . . . , xn) = (y1, . . . , yn+u−r) is negligible, and
thus that the ciphering function F can be viewed as an surjection from Kn onto
Kn+u−r.

We will describe in section 5 a general attack on this signature scheme, that is
also applicable when u is non-zero, with qu not too large. Therefore the signature
proposed by T.T. Moh in [13, 14] is insecure.



2.4 The TTM encryption system

In the present section, we recall the original description of the TTM cryptosys-
tem, given by T.T. Moh in [13, 14]. This definition of TTM is based on the
concept of tame automorphisms. As we will see, TTM is a particular case of our
general family TPM: it belongs to the family TPM(64, 38, 2,GF(256)).

General Principle
Let K be a finite field (which will be supposed “small” in real applications). We

first consider two bijections Φ2 and Φ3 fromKn+v toKn+v, with (z1, . . . , zn+v) =
Φ2(x1, . . . , xn+v) and (y1, . . . , yn+v) = Φ3(z1, . . . , zn+v) defined by the two fol-
lowing systems of equations :

Φ2 :



z1 = x1

z2 = x2 + f2(x1)
z3 = x3 + f3(x1, x2)

...
zn = xn + fn(x1, . . . , xn−1)
zn+1 = xn+1 + fn+1(x1, . . . , xn)

...
zn+v = xn+v + fn+v(x1, . . . , xn+v−1)

Φ3 :


y1 = z1 + P (zn+1, . . . , zn+v)
y2 = z2 +Q(zn+1, . . . , zn+v)
y3 = z3

...
yn+v = zn+v

with f2, . . . , fn+v quadratic forms over K, and P , Q two polynomials of degree
eight over K.

Φ2 and Φ3 are both “tame automorphisms” (see [13, 14] for a definition) and
thus are one-to-one transformations. As a result, (x1, . . . , xn+v) 7→ (y1, . . . , yn+v)
= Φ3 ◦Φ2(x1, . . . , xn+v) is also one-to-one and can be described by the following
system of equations :

y1 = x1 + P
(
xn+1 + fn+1(x1, . . . , xn), . . . , xn+v + fn+v(x1, . . . , xn+v−1)

)
y2 = x2 + f2(x1) +Q

(
xn+1 + fn+1(x1, .., xn), .., xn+v + fn+v(x1, .., xn+v−1)

)
y3 = x3 + f3(x1, x2)

...
yn = xn + fn(x1, . . . , xn−1)
yn+1 = xn+1 + fn+1(x1, . . . , xn)

...
yn+v = xn+v + fn+v(x1, . . . , xn+v−1)

T.T. Moh found a clever way of choosing P , Q and fi such that y1 and y2 both
become quadratic functions of x1, . . . , xn when we set xn+1 = . . . = xn+v = 0.

Actual Parameters
This paragraph is given in the appendix. T.T. Moh chooses n = 64, v = 36 and
K = GF(256). As a result, TTM belongs to TPM(64, 38, 2,GF(256)). Applying
the formula of section 2.1, the size of the public keys is 214.5 Ko.



3 General Strategy for an Attack on TPM

In the present section, we describe a general strategy to attack a cryptosystem
of the TPM Family, when r is “small”. As a result TTM, which belongs to
TPM(64, 38, 2,GF(256)) is threatened by such attacks.

3.1 The MinRank Problem

Let r be an integer and K a field. We denote by MinRank(r) the following
problem: given a set {M1, . . . ,Mm} of n×n matrices whose coefficients lie in K,

find at least one m-tuple (λ1, . . . , λm) ∈ Km such that Rank
( m∑
i=1

λiMi

)
≤ r.

The MinRank problem was defined and studied in [17] by Shallit, Frandsen
and Buss. MinRank generalizes the “Rank Distance Coding” problem (intro-
duced by E. Gabidulin in [10], and considered in [3, 20]), which itself generalizes
the “Minimal Weight” problem in error correcting codes (see [1, 19, 2, 11]). In
[12], A. Kipnis and A. Shamir exposed a strategy to attack the HFE cryp-
tosystem (invented by J. Patarin, see [15]). They had to face an instance of
MinRank(r) with r = dlogq ne + 1. For that purpose, they introduced the “re-
linearization technique”. But their attack was still not polynomial, unlike here.
Note that the idea of finding small ranks was also used by D. Coppersmith, J.
Stern and S. Vaudenay (see [6, 7]) in their cryptanalysis of a scheme proposed
by A. Shamir in [18].

3.2 Complexity of MinRank

The general MinRank problem has been proven to be NP-complete by Shallit,
Frandsen and Buss (see [17]). More precisely, they prove that MinRank(r) NP-
complete when r = n − 1 (this corresponds to the problem of finding a linear
combination ofM1, . . . ,Mm that is singular). The principle of their proof consists
in writing any set of multivariate equations as an instance of MinRank. It can
be used in the same way to extend their result to the cases r = n− 2, r = n− 3,
. . . and even r = nα (when α > 0 is fixed). However, there is no such complexity
result for smaller values of r. Indeed, as we will see in the following sections,
polynomial algorithms can be described to solve the MinRank problem when r
is fixed.

3.3 Strategy of attack

We recall that m = n+u−r. We suppose m ≤ 2n, as an encryption function with
expansion rate > 2 is unacceptable. Moreover, if m > O(n), the cryptosystem
would be broken by Gröbner bases [8].

In each equation yi = xi + gi(x1, . . . , xi−1 ;xn−r+1, . . . , xn) (1 ≤ i ≤ n− r),
the homogeneous part is given by tXAiX, with tX = (x1, . . . , xn), Ai being a
(secret) matrix. Similarly, in each public equation y′i = Pi(x′1, . . . , x

′
n) is given

by tX ′MiX
′, with tX ′ = (x′1, . . . , x

′
n), Mi being a (public) matrix.



The fact that (x1, . . . , xn) = s(x′1, . . . , x
′
n) and (y′1, . . . , y

′
m) = t(y1, . . . , ym)

implies that there exist an invertible n × n matrix S and an invertible m ×m
matrix T such that:

t(SX ′)A1(SX ′)
...

t(SX ′)Am(SX ′)

 = T−1


tX ′M1X

′

...
tX ′MmX

′

 .

Let T−1 = (tij)1≤i,j≤m. We thus have, for any X ′:

tX ′(tSAiS)X ′ = tX ′
( m∑
j=1

tijMj

)
X ′

so that:

∀i, 1 ≤ i ≤ m,
m∑
j=1

tijMj = tSAiS.

From the construction of TPM(n, u, r,K), we have Rank(A1) ≤ r. Since S is

an invertible matrix, we have Rank(A1) =Rank(tSA1S) and thus Rank
( m∑
j=1

t1jMj

)
≤

r, that is precisely an instance of MinRank(r).
Suppose we are able to find (at least) one m-tuple (λ1, . . . , λm) such that

Rank
( m∑
j=1

λjMj

)
≤ r. With a good probability, we can suppose that:

m∑
j=1

λjMj = µtSA1S (µ ∈ K∗).

Then we deduce the vector spaces V0 = S−1(Kn−r × {0}r) (corresponding to
xn−r+1 = . . . = xn = 0) and W0 = S−1({0}n−r ×Kr) (corresponding to x1 =
. . . = xn−r = 0) by simply noticing that V0 = Im

(∑m
j=1 λjMjA1

)
and W0 =

Ker
(∑m

j=1 λjMjA1

)
.

Once we have found V0 and W0, we can easily deduce the vector space V1 =
S−1({0} × Kn−r−1 × {0}r) of dimension 1 (corresponding to x1 = xn−r+1 =
. . . = xn = 0) and W1 = S−1(K × {0}n−r−1 × Kr) (corresponding to x2 =
. . . = xn−r = 0): we just look for coefficients α1, . . . , αn, β1, . . . , βm such that
the following equation:

m∑
j=1

βjy
′
j =

n∑
i=1

αixi + δ,

holds for any element of V0. This can be obtained by simple Gaussian reduction.
We also obtain the g2 quadratic function by Gaussian reduction.

By repeating these steps, we obtain two sequences of vector spaces:

V0 ⊇ V1 ⊇ V2 ⊇ . . . ⊇ Vn−r−1



W0 ⊆W1 ⊆W2 ⊆ . . . ⊆Wn−r−1.

At the end, we have completely determined the secret transformations s and
t, together with the secret functions gi. As a result, this algorithm completely
breaks the TPM family of cryptosystems (we recovered the secret key).

4 Two attacks on MinRank and TPM

In the previous section, we proved that breaking the TPM family of cryptosys-
tems is easy if we can solve the MinRank(r) problem. This is the point we are
interested in, in the present section. Two algorithms will be described.

4.1 The ‘Linearity Attack’ on MinRank and TTM

In this paragraph, we study the particular case of TTM, as described by T.T.
Moh in [13, 14]. In this case, we show that the MinRank(r) problem is easily
solved, because of the particular structure of the Q8 function used in Φ3.

Description of the Attack
In section 3.3, we proved that an attack can be successfully performed on this

cryptosystem, as soon as we can find out the vector spaces V0 = S−1({0}2×K62)
(corresponding to x1 = x2 = 0) and W0 = S−1(K2 × {0}62) (corresponding to
x3 = . . . = x64 = 0). At first sight, the equations giving y1 and y2 seem to be
quadratic in (x1, . . . , x64). This leads a priori to an instance of MinRank(2).

However, note that the function x 7→ x2 is linear on K = GF(256), consid-
ered as a vector space of dimension 8 over F = GF(2). Therefore, considering
the equations describing the (secret) Ψ function of TTM1, if we choose a basis
(ω1, . . . , ω8) of K over F and write xi = xi,1ω1 + . . .+xi,8ω8 (1 ≤ i ≤ 64), y1 and
y2 become linear functions of x1,1, x1,2, . . . , x1,8, . . . , x64,1, . . . , x64,8. In terms of
MinRank, this means that TTM leads to an instance of MinRank(0) for 8n×8n
matrices (instead of an instance of MinRank(2) for n × n matrices). This leads
to the following attack on TTM:

1. Let x′i = x′i,1ω1 + . . .+x′i,8ω8 (1 ≤ i ≤ 64). Rewrite each public equation y′i =
Pi(x′1, . . . , x

′
64) as y′i = P̃i(x′1,1, . . . , x

′
64,8) (with P̃i a quadratic polynomial

in 64× 8 = 512 variables over F = GF(2)).
2. Find the vector space of the 612-tuples (β1, . . . , β100, α1,1, . . . , α64,8) ∈ K612

satisfying:
100∑
i=1

βiy
′
i =

64∑
i=1

8∑
j=1

αi,jx
′
i,j .

This can be done by Gaussian reduction. We thus obtain the vector spaces
V0 and W0 defined above.

3. The remaining part of the attack is exactly the same as in section 3.3.
1 See (E) in the appendix, in which t19 is a linear transformation.



Complexity of the Attack
The main part of the algorithm consists in solving a system of linear equa-

tions on 612 variables, by Gaussian reduction. We thus obtain a complexity of
approximately 228 elementary operations to break TTM.

4.2 The ‘Kernel Attack’ on MinRank and TPM

We describe here a new attack on MinRank(r), which works when qr is small
enough.

Description of the Attack (with the same notations as in section 3.3)

1. Choose k random vectors X ′[1], . . . , X ′[k] (with k an integer depending on n
and m, that we define below). Since dim Ker(tSA1S) = n− Rank(tSA1S) ≥
n − r, we have the simultaneous conditions X ′[i] ∈ Ker(tSAiS) (1 ≤ i ≤ k)
with a probability ≥ q−kr.

2. We suppose we have chosen a “good” set {X ′[1], . . . , X ′[k]} of k vectors (i.e.
such that they all belong to Ker(tSA1S)). Then we can find an m-tuple

(λ1, . . . , λm) such that, for all i, 1 ≤ i ≤ k,
( m∑
j=1

λjMj

)
(X ′[i]) = 0. They

are solution of a system of kn linear equations in m indeterminates. As
a result, if we let k = dmn e, the solution is essentially unique and can be
easily found by Gaussian reduction. We thus obtain the two vector spaces
V0 = S−1(Kn−r × {0}r) (corresponding to xn−r+1 = . . . = xn = 0) and
W0 = S−1({0}n−r ×Kr) (corresponding to x1 = . . . = xn−r = 0).

3. The remaining part of the attack is exactly the same as in section 3.3.

Complexity of the Attack
From the description of the attack, its complexity is easily seen to be O(qd

m
n er ·

m3).

Application to TTM
In the particular case of TTM, we have q = 256, n = 64, m = 100 and r = 2.

We thus obtain an attack on TTM in complexity O(252).

Note: Compared to the 228 of section 4.1, this attack is slower, but it does
not make use of any linearity of y1 and y2, so that it can also be used to break
possible generalizations of TTM, with more general “Q8 components” (see [4] for
examples of Q8 which provide non linear expressions for y1 and y2 over GF(2)).

5 The ‘Degenerescence Attack’ on TPM signature
schemes

We describe here a general attack on TMP signature schemes (recall that such
schemes are possible only for u ≤ r), when qu is not too large. From the descrip-
tion of the attack, its complexity is easily seen to be O(qu ·n6). We use the same
notations as in section 3.3. In particular, m = n+ u− r.



1. We choose a random m-tuple (β1, . . . , βm) ∈ Km. With a probability q−u−1,
we can suppose that βiPi is a degenerated quadratic polynomial (i.e. a
quadratic polynomial which can be rewritten with fewer variables after a
linear change of variables). The fact that a quadratic polynomial is degen-
erated can easily be detected: for instance by using its canonical form (see
[16] for some other methods).

2. Suppose we have found a “good” m-tuple (β1, . . . , βm). Considering the new

set of (< n) variables for the quadratic form
m∑
i=1

βiPi, we deduce easily the

vector space Wn−r = S−1(Kn−r−1 × {0} ×Kr).
3. Then we look for a n-tuple (α1, . . . , αn) ∈ Kn and a quadratic function gn−r,

such that:
m∑
i=1

βiy
′
i =

n∑
i=1

αix
′
i + gn−r(x′1, . . . , x

′
n)

is true for any (x′1, . . . , x
′
n) ∈Wn−r. This can be done by Gaussian reduction.

We thus obtain the vector space Vn−r = S−1({0}n−r−1×K ×{0}r) and the
quadratic polynomial gn−r.

4. The same principle can be repeated n−r times, so as to obtain two sequences
of vector spaces:

Vn−r ⊆ Vn−r−1 ⊆ . . . ⊆ V0

Wn−r ⊇Wn−r−1 ⊇ . . . ⊇W0.

At the end, as in the attack described in section 3.3, we have completely
determined the secret transformations s and t, together with the secret func-
tions gi. As a result, this algorithm completely breaks the TPM family in
signature mode (we recovered the secret key).

6 Solution to the TTM 2.1 Challenge of US Data Security

In 1997, US Data Security published challenges about TTM (see [21]). They are
based on three different versions of TTM in encryption mode, corresponding to
different choices of the parameters.

On May 2nd, 2000, we managed to break the second challenge, based on
TTM 2.1. As mentioned in [21], “the public-key TTM 2.1 is a block cipher with
plaintext block size 64 and ciphertext block size 100. It works on 8 bits finite
field (i.e., characters)”. The public key can be obtained by approximately 2000
queries to the “encryption oracle”. As mentioned in section 2.4, its size is 214.5
Kbytes. By using the general method described in section 4.1, we obtained the
following plaintext, which can be easily checked to be the exact solution to this
“Contest II” (note that the quotation marks are part of this plaintext):

"Tao TTP way BCKP of living hui mountain wen river moon love pt"



7 Conclusion

We cryptanalysed a large class of cryptosystems TPM, that includes TTM as it
has been described by T.T. Moh [14]. They can be broken in polynomial time,
as long as r is fixed. The proposed TTM cryptosystem [14] can be broken in
228. As an application of our general method, we broke the “TTM 2.1” challenge
proposed by US Data Security in October 1997. Even if Q8 is nonlinear, and since
r = 2, it is still broken in 252 elementary operations for a 512-bit cryptosystem.
There is very little hope that a secure triangular system will ever be proposed.
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Appendix: Actual Parameters for the TTM Cryptosystem

Let Q8 be the function defined by

Q8(q1, . . . , q30) = q8
1 + q4

29 + q2
30 + [q4

2 + q2
3q

2
8 + q2

4q
2
5 + q2

6q
2
12 + q2

7q
2
13]

×[q4
9+(q2

10+q14q15+q18q19+q20q21+q22q24)(q2
11+q16q17+q23q28+q25q26+q13q27)].

A straightforward computation gives Q8(q1, . . . , q30) = t219 as soon as we make
the following choices for q1, . . . , q30 :

q1 = t1 + t2t6 q2 = t22 + t3t7 q3 = t23 + t4t10 q4 = t3t5
q5 = t3t11 q6 = t4t7 q7 = t4t5 q8 = t27 + t5t11

q9 = t26 + t8t9 q10 = t28 + t12t13 q11 = t29 + t14t15 q12 = t7t10

q13 = t10t11 q14 = t212 + t7t8 q15 = t213 + t11t16 q16 = t214 + t10t12

q17 = t215 + t11t17 q18 = t12t16 q19 = t11t12 q20 = t8t13

q21 = t7t13 q22 = t8t16 q23 = t14t17 q24 = t7t11

q25 = t12t15 q26 = t10t15 q27 = t12t17 q28 = t11t14

q29 = t18 + t21 q30 = t19 + t218

We choose n = 64, v = 36, and we consider the ti = ti(u1, . . . , u19) (1 ≤ i ≤
19) as randomly chosen linear forms (i.e. homogeneous polynomials of degree
one in u1, . . . , u19), satisfying the following conditions:

– t1(u1, . . . , u19) = u1 ;
– t18(u1, . . . , u19) = u18 ;
– t19(u1, . . . , u19) = u19 ;
– t6(u1, . . . , u19), t7(u1, . . . , u19), t18(u1, . . . , u19) and t19(u1, . . . , u19) depend

only on the variables u6, u7, . . . , u17,



We thus obtain polynomials qi = qi(u1, . . . , u19) (1 ≤ i ≤ 30) of degree two in
u1, . . . , u19. Finally, we choose:

P (z65, . . . , z100) = Q8(z93, . . . , z100, z73, . . . , z92, z63, z64)
Q(z65, . . . , z100) = Q8(z65, . . . , z92, z61, z62)
f61(x1, . . . , x60) = q29(x9, x11, . . . , x16, x51, . . . , x62)− x61

f62(x1, . . . , x61) = q30(x9, x11, . . . , x16, x51, . . . , x62)− x62

f63(x1, . . . , x62) = q29(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)− x63

f64(x1, . . . , x63) = q30(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)− x64

f65(x1, . . . , x64) = q1(x9, x11, . . . , x16, x51, . . . , x62)
...

f92(x1, . . . , x91) = q28(x9, x11, . . . , x16, x51, . . . , x62)
f93(x1, . . . , x92) = q1(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

...
f100(x1, . . . , x99) = q8(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

and randomly chosen quadratic forms for fi (2 ≤ i ≤ 60).
Let us denote θ : K64 → K100 the function defined by

θ(x1, . . . , x64) = (x1, . . . , x64, 0, . . . , 0).

Hence (x1, . . . , x64) 7→ (y1, . . . , y100) = Φ3 ◦ Φ2 ◦ θ(x1, . . . , x64) is given by the
following system:

(E)



y1 = x1 + [t19(x9, x11, . . . , x16, x51, . . . , x62)]2 (= x1 + x2
62)

y2 = x2 + f2(x1) + [t19(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)]2

(= x2 + f2(x1) + x2
64)

y3 = x3 + f3(x1, x2)
...

y60 = x60 + f60(x1, . . . , x59)
y61 = q29(x9, x11, . . . , x16, x51, . . . , x62) (= x61 + x2

9)
y62 = q30(x9, x11, . . . , x16, x51, . . . , x62) (= x62 + x2

61)
y63 = q29(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64) (= x63 + x2

10)
y64 = q30(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64) (= x64 + x2

63)
y65 = q1(x9, x11, . . . , x16, x51, . . . , x62)

...
y92 = q28(x9, x11, . . . , x16, x51, . . . , x62)
y93 = q1(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

...
y100 = q8(x10, x17, . . . , x20, x15, x16, x51, . . . , x60, x63, x64)

The Public Key

The user selects a random invertible affine transformation Φ1 : K64 → K64,
and a random invertible affine transformation Φ4 : K100 → K100, such that the



function F = Φ4 ◦ Φ3 ◦ Φ2 ◦ θ ◦ Φ1 satisfies

F (0, . . . , 0) = (0, . . . , 0).

By construction of F , if we denote (y′1, . . . , y
′
100) = F (x′1, . . . , x

′
64), then we

have an explicit set {P1, . . . , P100} of 100 quadratic polynomials in 64 variables,
such that: 

y′1 = P1(x′1, . . . , x
′
64)

...
y′100 = P100(x′1, . . . , x

′
64)

This set of 100 polynomials constitutes the public key of the TTM cryptosystem.

Encrypting a message

Given a plaintext (x′1, . . . , x
′
64) ∈ K64, the sender computes y′i = Pi(x′1, . . . , x

′
64)

for 1 ≤ i ≤ 100 (thanks to the public key) and sends the ciphertext (y′1, . . . , y
′
100).

Decrypting a message

Given a ciphertext (y′1, . . . , y
′
100) ∈ K100, the legitimate receiver recovers the

plaintext by:

(x′1, . . . , x
′
64) = Φ1

−1 ◦ π ◦ Φ2
−1 ◦ Φ3

−1 ◦ Φ3
−1 ◦ Φ4

−1(y′1, . . . , y
′
100)

with π : K100 7→ K64 defined by π(x1, . . . , x100) = (x1, . . . , x64) and thus satisfies
π ◦ θ = Id.


